
GPGS-F
User’s Guide
8th Edition

Norsk
samarbeid
innen
grafisk
databehandling

Norwegian
Association
for
Computer
Graphics

PAGE ii8th Edition GPGS-F User’s Guide

Last changed: Apr 7, 1995

Notice

SINTEF DELAB / NORSIGD retain all ownership rights to the GPGS-F software and its
documentation.

The information in this document is subject to change without notice. SINTEF DELAB /
NORSIGD assume no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or
copied only in accordance with the terms of such license. SINTEF DELAB / NORSIGD
are in no way responsible for consequential damages and/or costs from the use of this
software.

FrameMaker is a registered trademark of Frame Technology Corporation.

PostScript is a registered trademark of Adobe Systems Incorporated.

X Window System is a trademark of the Massachusetts Institute of Technology.

This document was prepared using FrameMaker publishing software. All figures
illustrating program examples were generated by using the GPGS-F device driver for
PostScript, and subsequently included into the document.

PAGE iii

Table of Contents Last changed: May 10, 1995

8th Edition GPGS-F User’s Guide

Table of Contents

Page

Notice . ii
Table of Contents iii
Preface . . xi
Font Conventions Used in the Manual xiii
Argument Naming Conventions xiii
Manual Distribution and Revisions xiv
Modification Dates xv

Chapter 1
Graphic Devices

1.1 System Initialization 1-1
1.2 Device Control 1-2

1.2.1 Device Options. 1-4
1.2.2 Inquiring Available Device Drivers 1-5

1.3 Synchronizing GPGS-F Output with Other I/O Operations . . . 1-5
1.4 GPGS-F Version Numbering 1-6

Chapter 2
Windows, Viewports and Clipping

2.1 Window - Viewport Mapping 2-1
2.1.1 Window Definition 2-1
2.1.2 Viewport Definition 2-2
2.1.3 Default Values 2-3
2.1.4 Window and Viewport Dimensions 2-3

2.2 Clipping 2-4
2.3 Coordinate Processing 2-4

Chapter 3
Introduction to Picture Segments

PAGE iv

Table of Contents Last changed: May 10, 1995

8th Edition GPGS-F User’s Guide

Chapter 4
Basic Graphic Primitives

4.1 Linetypes 4-1
4.1.1 Linepattern Length 4-2

4.2 Drawing Single Lines 4-2
4.3 Circular Arcs 4-7

4.3.1 Software / Hardware Generation 4-10
4.3.2 Circle Smoothness. 4-10

4.4 Elliptic Arcs 4-11
4.5 Markers 4-12

Chapter 5
Drawing in True Scale

Chapter 6
Transformations

6.1 System Transformation Matrix 6-1
6.2 Basic Transformation Routines 6-2

6.2.1 Translation 6-3
6.2.2 Scaling 6-4
6.2.3 Rotation 6-4
6.2.4 Shearing 6-6
6.2.5 Vanishing Point 6-7

6.3 Combining Basic Transformations 6-8
6.4 Transformation Matrix Manipulation 6-9

6.4.1 Internal Matrix Stack 6-9
6.4.2 Direct User Manipulation 6-10

6.5 Viewing Routines 6-12
6.5.1 Focal Point 6-14
6.5.2 Vanishing Point 6-16

6.6 Transformation Mode 6-16

Chapter 7
Character Strings

7.1 Drawing Text Strings 7-1
7.1.1 Format Control 7-2

7.2 Drawing Integer and Real Numbers. 7-3
7.3 Character Size 7-4
7.4 Character Transformations 7-5

7.4.1 Shearing 7-5
7.4.2 Rotation 7-6

7.5 Software / Hardware Text Generation 7-6

PAGE v

Table of Contents Last changed: May 10, 1995

8th Edition GPGS-F User’s Guide

7.6 Text Alignment 7-7
7.7 Text Fonts. 7-8
7.8 Character Encoding. 7-10

7.8.1 National Character Sets 7-10
7.9 Proportional Spacing 7-12
7.10 Inquiring Text Extent 7-13

Chapter 8
Interaction Facilities

8.1 Basic Interactive Programming 8-2
8.2 Interaction Modes 8-4

8.2.1 Sample Mode Input 8-4
8.2.2 Event Mode Input 8-5

8.3 Echo Control 8-8
8.3.1 Echo Specification. 8-8

8.4 Methods for Text Output 8-11
8.5 Interaction With a Second Device 8-11
8.6 Reading Additional Input Data 8-12
8.7 Compatibility With Previous Versions 8-13
8.8 Coordinate Conversion Routines 8-14

Chapter 9
Defining Line Patterns and Representation

9.1 Defining Line Patterns 9-2
9.2 Defining Line Representation 9-3

9.2.1 Line Representation Parameters 9-5

Chapter 10
Polylines and Curves

10.1 Polylines 10-1
10.1.1 Automatic Value or Index Increment 10-2

10.2 Parameterized Curves 10-4
10.2.1 Automatic Value Increment 10-5

PAGE vi

Table of Contents Last changed: May 10, 1995

8th Edition GPGS-F User’s Guide

Chapter 11
Colour Specification

11.1 Colour Index Selection. 11-2
11.2 Colour Models 11-2

11.2.1 RGB Colour Model 11-3
11.2.2 The HLS Colour Model 11-4
11.2.3 The HSV Colour Model 11-5

11.3 Monochrome Devices 11-6

Chapter 12
Raster Graphics

12.1 Raster Graphics Programming 12-1
12.2 Polygons 12-2

12.2.1 Polygon Drawing 12-3
12.2.2 Interior Style 12-4
12.2.3 Perimeter Drawing 12-4
12.2.4 Texture Rendering 12-5

12.2.4.1 Texture Quality 12-5
12.2.4.2 Pattern and Hatch Style Tables 12-7
12.2.4.3 Global Texture Attributes 12-8
12.2.4.4 Applying Texture to 3D Polygons 12-11

12.3 Pixel Arrays 12-12
12.3.1 Software / Hardware Generation 12-12
12.3.2 Inquiring Pixel Values From the Display 12-15

Chapter 13
Picture Element Attributes

13.1 Linewidth 13-1
13.2 Depth Modulation 13-2
13.3 Blinking 13-2

Chapter 14
Picture Segment Storing

14.1 Segment Classes. 14-1
14.1.1 Pseudo Picture Segments 14-1
14.1.2 Retained Picture Segments 14-2

14.2 Picture Segment Identifiers 14-2
14.3 Defining Picture Storage 14-2

14.3.1 Primary Buffers 14-3
14.3.1.1 Programming Guidelines 14-4

14.3.2 Picture Libraries 14-4
14.4 Copying Segments 14-6
14.5 Deleting Segments 14-7

PAGE vii

Table of Contents Last changed: May 10, 1995

8th Edition GPGS-F User’s Guide

Chapter 15
Pseudo Picture Segments

15.1 Inserting Pseudo Segments 15-1
15.1.1 Colour of Inserted Primitives 15-2
15.1.2 Areas of Application 15-4

15.2 Clipping 15-4
15.3 Pseudo Segment Reference 15-4

Chapter 16
Retained Picture Segments

16.1 Storage Mode 16-1
16.2 Deferral Mode 16-2

16.2.1 Compatibility Routines 16-3
16.3 Redrawing 16-4
16.4 Deleting Segments 16-4

Chapter 17
Retained Segment Attributes

17.1 Visibility 17-1
17.2 Highlighting 17-3
17.3 Priority 17-3

Chapter 18
Image Transformations

Chapter 19
Background Device

19.1 Background Viewport 19-2
19.2 Limitations 19-2

Chapter 20
Pick Input

20.1 Element Namestack. 20-1
20.2 Element Detectability 20-3
20.3 Segment Detectability 20-4
20.4 Scanning for Hit 20-5
20.5 Using Pseudo Segments 20-7

PAGE viii

Table of Contents Last changed: May 10, 1995

8th Edition GPGS-F User’s Guide

Chapter 21
Multi Window Devices

21.1 Window to Viewport Mapping 21-2
21.2 Window Management 21-2
21.3 Window Operations 21-6
21.4 Window Numbers 21-9
21.5 Retained Segments 21-10
21.6 Updating Window Contents 21-10
21.7 Requesting Window Size 21-12
21.8 Interaction 21-13
21.9 Background Device. 21-13

Chapter 22
Hidden Lines and Surfaces Removal

22.1 HLHS Module Control. 22-2
22.2 Inserting the Result 22-3
22.3 Using the Dummy Device. 22-6
22.4 Front- and Back-Facing Polygons 22-7
22.5 Polygon Attributes 22-8
22.6 Limitations 22-8

Chapter 23
Fetching System Status Data

Chapter 24
Errors and Messages

24.1 GPGS-F Error Vector 24-1
24.2 Default Error Handling 24-2
24.3 Error File 24-3
24.4 Application Supplied Error Routine 24-4

24.4.1 Closing Down GPGS-F 24-5

PAGE ix

Table of Contents Last changed: May 10, 1995

8th Edition GPGS-F User’s Guide

Appendices

Appendix A
Installation Dependent Parameters

Appendix B
Software Character Fonts

Appendix C
Additional GPGS-F Products

C.1 MICRO-GPGS-F C-1
C.1.1 Main Limitations Compared to GPGS-F C-2

C.2 GRAPHISTO C-2
C.3 SURRENDER C-4

Appendix D
Machine Dependencies

D.1 File / Communication Channel Numbers D-1

Appendix E
Device Driver Descriptions

Appendix F
Routine Name Index

Appendix G
Routine Number Index

G.1 GPGS-F Routines G-1
G.2 GRAPHISTO Routines G-3
G.3 SURRENDER Routines G-4

Appendix H
C Language Interface

Appendix I
Error Messages

Keyword Index

PAGE x

Table of Contents Last changed: May 10, 1995

8th Edition GPGS-F User’s Guide

PAGE xi8th Edition GPGS-F User’s Guide

Last changed: Apr 7, 1995

Preface to the first edition

This manual is intended to be used as a guide when writing programs in GPGS-F. It may
also be used as a text book or for self study. Moreover, there is an index of all the routines
in Appendix F and it may thus be used for reference.

The GPGS-F system was originally designed by Rekencentrum Delft University of
Technology, The Netherlands; Science Faculty, Catholic University Nijmegen, The
Netherlands.

A version of the system written in standard Fortran has been developed by NORSIGD
(Norwegian Association for Computer Graphics) at the Computing Centre at the
University of Trondheim (RUNIT, now DELAB).

As GPGS-F is under continuous development, additions and corrections of this manual
will be produced.

NORSIGD
September 1975

Preface to the eighth edition

This edition of the User’s Guide describes version 9503 of the GPGS-F system.

The most important extension compared to the previous version, is the inclusion of
routines for ‘multi-window’ devices.

Several extensions to the existing routines have been included. These include extending
the allowable number of retained picture segments, removing the limitation on how many
segments may be stored in picture libraries, and extending the GPGS-F text routines to
handle 8 bit character codes.

In general, the modifications to the GPGS-F system during the past years have been
affected by the evolving changes in use of computer graphics devices. Thus, GPGS-F is
now very well suited for use with raster graphics workstations running some window
system, and with colour and monochrome raster printers/plotters. Still, the system is fully
backwards compatible, allowing old application to be run without modification with new
kinds of devices.

NORSIGD / SINTEF DELAB
April 1995
Magnar Granhaug

PAGE xii8th Edition GPGS-F User’s Guide

Last changed: Apr 7, 1995

PAGE xiii8th Edition GPGS-F User’s Guide

Last changed: May 30, 1996

Font Conventions Used in the Manual

To ease readability, different fonts are used throughout the manual.

Subroutine definitions are presented as

Argument names are written as Itool in the description that follows the definition. The
same font is also used when later referring to subroutine arguments.

The notation Namarr(1) is used to mark that an argument is an array.

When an argument is used to return value(s) to the application program, this is marked by
underlining the argument, as Lennam above.

With the exception of the definition, subroutine names appearing in the text are written as
REQHIT.

Examples of program code will appear as

 CALL GPGS
 CALL NITDEV(IDEV)
 .
 .

When an example shows a complete program, this is marked with the comment

C COMPLETE WORKING EXAMPLE

Some examples include calls to external routines that are not part of GPGS-F. The routine
names are then written in italics, as

 CALL HOUSE

Italics and Boldface elsewhere in the text is used to emphasize certain words or phrases,
such as cross-references and some important terms when first mentioned.

Argument Naming Conventions

In program examples and subroutine definitions, Fortran implicit declaration of variables
is assumed, unless explicitly stated otherwise.

That is, argument names starting with I - N are integer variables,
others are floating point variables, except
argument names starting with C, which are character variables (must be declared).

CALL REQHIT (Itool, Maxnam, Namarr(1), Lennam)

PAGE xiv8th Edition GPGS-F User’s Guide

Last changed: May 30, 1996

Manual Distribution and Revisions

Starting with the 8th edition of the GPGS-F User’s Guide, the manual is available on the
World Wide Web, in PostScript format.

To get to the manual, just follow the GPGS link from NORSIGD’s home page,
http://www.oslo.sintef.no/norsigd/

This allows for a more dynamic change of the manual. Whenever changes are necessary,
either to correct errors or to describe new features, these will be inserted in the manual
without delay, and the changes will be announced through NORSIGD and/or WWW.

There will be a list available, giving the latest modification date of each chapter and
appendix of the manual. At the bottom right of each page, this date is given. Thus, readers
will easily see what chapters of their manual are revised, and may download (or order)
these individual chapters.

The modification dates are given per chapter/appendix, even if only a single page is
changed, with one exception. Because of its size, Appendix E is divided into 3 parts, with
the first one being an introduction, the second part describes drivers 0 to 57, and the last
part describes the drivers from 58 and up.

The list of modification dates is also given on the next page. Whenever a chapter/appendix
is changed, this list is also updated, i.e. readers should always download this list when
downloading a new update of a chapter/appendix.

PAGE xv8th Edition GPGS-F User’s Guide

Last changed: May 30, 1996

Modification Dates

Chapter/
Appendix

Last
changed

Notice Apr 7, 1995

Table of Contents May 10, 1995

Preface Apr 7, 1995

About the Manual May 30, 1996

Modification Dates May 30, 1996

1 Graphic Devices Apr 7, 1995

2 Windows, Viewports and
Clipping

Apr 7, 1995

3 Introduction to Picture
Segments

Apr 7, 1995

4 Basic Graphic Primitives Aug 7, 1995

5 Drawing in True Scale Apr 7, 1995

6 Transformations Apr 7, 1995

7 Character Strings May 10, 1995

8 Interaction Facilities Apr 7, 1995

9 Defining Line Patterns
and Representation

Apr 7, 1995

10 Polylines and Curves Apr 7, 1995

11 Colour Specification Apr 7, 1995

12 Raster Graphics Aug 9, 1995

13 Picture Element
Attributes

Apr 7, 1995

14 Picture Segment Storing May 10, 1995

15 Pseudo Picture Segments Apr 7, 1995

16 Retained Picture
Segments

May 10, 1995

17 Retained Segment
Attributes

May 10, 1995

18 Image Transformations Apr 7, 1995

19 Background Device Jan 18, 1996

20 Pick Input Apr 7, 1995

21 Multi Window Devices Mar 14, 1996

22 Hidden Lines and
Surfaces Removal

Apr 7, 1995

23 Fetching System Status
Data

Jan 18, 1996

24 Errors and Messages Apr 7, 1995

A Installation Dependent
Parameters

Apr 7, 1995

B Software Character Fonts May 10, 1995

C Additional GPGS-F
Products

Apr 7, 1995

D Machine Dependencies Apr 7, 1995

E Device Driver
Descriptions
(Introduction)

Jan 18, 1996

E Device Driver
Descriptions
(drivers 0 to 57)

Jan 18, 1996

E Device Driver
Descriptions
(drivers 58 and up)

Apr 9, 1996

F Routine Name Index Apr 7, 1995

G Routine Number Index Apr 7, 1995

H C Language Interface Apr 7, 1995

I Error Messages Apr 7, 1995

Keyword Index Aug 16, 1995

Chapter/
Appendix

Last
changed

PAGE xvi8th Edition GPGS-F User’s Guide

Last changed: May 30, 1996

8th Edition PAGE 1-1

Graphic Devices Last changed: Apr 7, 1995

GPGS-F User’s Guide

Chapter 1
Graphic Devices

GPGS-F has been designed to support several graphic devices from the same application
program. The device independence of GPGS-F is realized by placing all code dependent
on the physical characteristics of each graphic device in a separate module called a device
driver (the available drivers are listed in Appendix E).

Adapting the system, and hence application programs, to new kinds of graphic hardware
is thus achieved by adding new device drivers. No changes in the main part of GPGS-F is
necessary, except for a simple table update.

In most cases, a device driver generates code for a specific output device. There are
however some drivers that are common to several devices, such as the HPGL driver,
which may generate output for a large number of different Hewlett-Packard plotters.

Figure 1.1 Picture generation on display and printer.

1.1 System Initialization
In any GPGS-F application program, the first call to a GPGS-F routine must be

This initializes the system and ensures that all internal data is set to its initial state.

Application

program

GPGS-F

routines

Driver for

display

Driver for

printer

CALL GPGS

8th Edition PAGE 1-2

Graphic Devices Last changed: Apr 7, 1995

GPGS-F User’s Guide

1.2 Device Control
Before generating any graphic output, a device to receive the output must be specified.
First, the driver for the device must be initialized by

where Idev is the GPGS-F unit number for the device driver. This will both initialize the
driver software and, if necessary, prepare the physical device for receiving output. A
device driver that has been initialized by NITDEV, is said to be open.

It is possible to have up to four devices open at any time. If more than four are wanted,
one of the first four must be released before initializing the fifth. Although several devices
may be open at a time, GPGS-F is able to generate graphic output for just one device at a
time, using the current active device driver.

Note that NITDEV just specifies what device to generate output for, it does not say where
the output should be sent. By default, the output is directed to the terminal running the
program, but this may be changed by the DEVOPT routine described on page 1-4.

By default, the last driver initialized by NITDEV will be active. Selecting one of the other
open drivers to be active is done by

where Idev is defined as for NITDEV.

When a device is no longer to be used, it must be released by

This will ensure that the device is closed in a proper way, and if retained segments are
stored for the device (see Chapter 14 and Chapter 16), these will be deleted from incore
buffers.

When drawing more than one picture using the same device, the display surface must be
cleared between each drawing by

Most device drivers will ignore the value of Iopt. For a few drivers, the value may
however be used to control some device dependant features (described in Appendix E).

The actual action performed by CLRDEV will obviously depend on the type of device in
use.For terminals, the previous picture will be erased, for plotters/printers, a new piece of
paper will be loaded, or in case of roll paper, the paper will be advanced. If automatic
paper change is not available, paper must be changed manually by the user (which devices
this apply to is also shown in Appendix E).

CALL NITDEV (Idev)

CALL SELDEV (Idev)

CALL RLSDEV (Idev)

CALL CLRDEV (Idev, Iopt)

8th Edition PAGE 1-3

Graphic Devices Last changed: Apr 7, 1995

GPGS-F User’s Guide

Note that NITDEV implies a call to CLRDEV, i.e. there is no need to call CLRDEV
before the first drawing. Nor is it necessary to call CLRDEV after the last drawing, as
RLSDEV will perform the necessary paper advance for the last page.

Note that CLRDEV will, as RLSDEV, delete any retained segments from incore buffers.

A common use of multiple devices, is to have a hard copy or plotting device initialized at
the same time as an interactive device. Thus an interactive user may request a copy of his
current display by merely switching devices and executing the same sequence of GPGS-F
calls to the plotting device as previously issued to the interactive display (GPGS-F does
however provide a method for getting hardcopies by specifying the plotting device as a
background device, see Chapter 19).

Example 1.1 Device switching.
C
C Initialize GPGS-F and plotter device.
C
 CALL GPGS
 CALL NITDEV(IDEV1)
C
C Initialize graphic terminal.
C
 CALL NITDEV(IDEV2)
C
C The last initialized device is active.
C Now generate a drrawing according to arguments
C (that the user can change interactively?).
C 'DSPLAY' is a user routine.
C
 1000 CONTINUE
 CALL DSPLAY(ARGUMENTS)
 IF ('hardcopy') THEN
C
C Switch to plotter device and make a plot using the same
C drawing routine with the same argument values.
C
 CALL SELDEV(IDEV1)

CALL DSPLAY(ARGUMENTS)
 ENDIF
C
C If more plots wanted, clear the screen,
C prepare new paper on the plotter.
C
 IF ('one_more_plot') THEN
 CALL CLRDEV(IDEV1, 0)
 CALL CLRDEV(IDEV2, 0)
 CALL SELDEV(IDEV2)
 GO TO 1000
 ENDIF
C
C Release devices, end program.
C
 CALL RLSDEV(IDEV1)
 CALL RLSDEV(IDEV2)
 END

8th Edition PAGE 1-4

Graphic Devices Last changed: Apr 7, 1995

GPGS-F User’s Guide

1.2.1 Device Options
When a device driver is initialized by NITDEV, various default conditions are set, both in
the driver software and device firmware.

In some cases these defaults are not what the user wants, and there is a need for some user
control of the driver start-up conditions. A routine is therefore available for setting some
device driver options to be used at driver initialization.

This routine is defined as

where options are supplied through Iarr (integers), Rarr (real numbers) and Carr (text
strings). Ilthi, Ilthr and Ilthc gives the length of each of the three arrays.

The driver descriptions in Appendix E show how many options are recognized by the
different device drivers, and what device specific features the options control.

The first integer option (Iarr(1)) is however defined the same way for all devices. This
gives the unit number of the communication channel (or file number) that is to be used for
driver output. With some computers the unit number is chosen by the application
programmer, with others the number must be obtained from GPGS-F (see Appendix D
for details).

By definition, setting an option value to 0 (zero), or an empty string for text string options,
means that the default value of the option is to be used. The same applies to options not
supplied.

A single option may be set, without affecting options already set, by specifying the
negative option number in place of the array length (see example below).

Example 1.2 Setting device options.
C
C Declare an integer option array with fixed values.
 DIMENSION IOPTS(3)
 DATA IOPTS/33, 1, 3/
C
C Initialize GPGS-F, set fixed options.
 CALL GPGS
 CALL DEVOPT(IOPTS, 3, RDUM, 0, ' ', 0)
C
C Get the value to be used for real option 4 (user routine)
 CALL Getop4(RVAL4)
C
C Set real option 4, without changing options already set.
 CALL DEVOPT(0, 0, RVAL4, -4, ' ', 0)
C
C Then initialize the device.
 CALL NITDEV(IDEV)

CALL DEVOPT (Iarr(1), IIthi, Rarr(1), Ilthr, Carr(1), Ilthc)

8th Edition PAGE 1-5

Graphic Devices Last changed: Apr 7, 1995

GPGS-F User’s Guide

The options set by DEVOPT are sent to the next driver that is initialized. That is, if several
drivers are initialized, DEVOPT must be called before each call to NITDEV. Also note
that DEVOPT may be used to set options for individual device windows when using
multi window devices (see Chapter 21).

For compatibility with previous versions of GPGS-F, integer options may be set by

where Iarr and Ilth are defined as for DEVOPT. Note however that the maximum
value of Ilth is 10 when using NITOPT.

1.2.2 Inquiring Available Device Drivers
In most cases, the application programmer will know what device drivers his program is
to be used with. If this is not the case, it is possible to ask GPGS-F what drivers are linked
with the program.

The availability of a given device driver is returned by

where Idev is the GPGS-F driver number. Istat will return 1 if the driver is linked, -1 if
not. If Idev is not a legal GPGS-F device number, Istat -2 will be returned.

1.3 Synchronizing GPGS-F Output with
Other I/O Operations

When using GPGS-F with ‘traditional’ graphic terminals, and plotters connected between
the computer and a terminal, the same communication line is used for graphic output from
GPGS-F and other I/O operations for the application program. In most cases, such devices
will have to be switched to some sort of graphic mode to be able to interpret input as
graphic commands instead of ordinary text. If the application program then sends some
text to the device, this may not be recognized.

GPGS-F will switch the current device to graphic mode when a picture segment is opened,
and switch back to the previous mode when the picture segment is closed (picture
segments are introduced in Chapter 3). Thus, to be sure no text is interpreted as graphic
commands, the application should avoid generating any I/O outside GPGS-F while a
picture segment is open.

If, for some reason, an application program needs to perform I/O while a segment is open,
the device may be forced to leave graphic mode by

This will also ensure that graphic commands buffered within GPGS-F are flushed (the
UPDAT routine is described in detail in Chapter 16).

CALL NITOPT (Iarr(1), Ilth)

CALL INQDRV (Idev, Istat)

CALL UPDAT (0)

8th Edition PAGE 1-6

Graphic Devices Last changed: Apr 7, 1995

GPGS-F User’s Guide

1.4 GPGS-F Version Numbering
It is possible to find what version of GPGS-F that is linked with an application by

where Ibasv will return the version number of the common base version that is the base
for Isubv, which is the version number of the actual version (VMS, Unix etc.) the
application is running. Both version numbers are given as a 4-digit number yymm, where
yy is the year, and mm is the month (e.g. 9309 means the version was released in
September 1993).

CALL INQGPV (Ibasv, Isubv)

8th Edition PAGE 2-1

Windows, Viewports and Clipping Last changed: Apr 7, 1995

GPGS-F User’s Guide

Chapter 2
Windows, Viewports and Clipping

This chapter describes the coordinate systems used in GPGS-F:

- user coordinate system, the coordinate system the user defines his drawing in.

- window coordinate system, transformed user coordinates.

- normalized device coordinates (NDC), device independent coordinates for
referring to the display surface of a device.

Transformations are mentioned in this chapter, but are described in detail in Chapter 6.

2.1 Window - Viewport Mapping
The major purpose of designing a device-independent graphic system, is to allow the
application programmer to define his drawing in a coordinate system that is independent
of the actual graphic device that is to be used.

2.1.1 Window Definition
The coordinates used to define a GPGS-F drawing are called user coordinates. There are
no limitations on the values that may be used, as long as they may be represented as single
precision real numbers, which is the storage type used to store coordinate values in
GPGS-F.

As the user coordinates are received by GPGS-F, they are transformed by the system
transformation matrix (see Chapter 6) into window coordinates. If no transformations
are specified, user and window coordinates will be identical.

The window coordinates are then transferred to the device driver in use. To make the
driver able to actually display the primitives described, it must know how to map the
received coordinates onto to display surface. This mapping is set by defining a window,
a rectangular area (or a box if 3D) within the window coordinate system, and a
corresponding area/box on the display surface where this window is to appear.

8th Edition PAGE 2-2

Windows, Viewports and Clipping Last changed: Apr 7, 1995

GPGS-F User’s Guide

A window is defined by

where W2arr is a 4 element array describing a 2-dimensional window, or by

where W3arr is a 6 element array describing a 3-dimensional window. Within the arrays,
the window limits are given in the sequence [Xlow, Xhigh, Ylow, Yhigh (,Zlow, Zhigh)].

The window definition may be changed at any time within an application. GPGS-F will
however store the last definition only, i.e. if an application wants to switch between
different window settings, the values must be kept by the application itself.

2.1.2 Viewport Definition
In order to address the display surface without referring to the physical device
coordinates, normalized device coordinates are used. This coordinate system is defined
by assigning the coordinate range 0.0 - 1.0 to the largest square area of the display. The
position [0.0, 0.0] is defined to be at the lower left-hand corner of the display. Thus the
point [0.0, 0.5] will be half way up the left edge of a square display area, and [0.5, 0.5]
will be at the centre.

With non-square devices the largest possible square (or cubic volume) of the display
surface is assigned the range 0.0 to 1.0. Whichever coordinate may be longer then use
values greater than 1.0 to address the part of the display area outside the square.

The NDC system is a normal right-handed coordinate system, with the X axis running
horizontally and the Y axis vertically. The Z axis points from the display surface towards
the viewer, with 0.0 being at the display surface.

Figure 2.1 Normalized
Device
Coordinates.

CALL WINDW (W2arr(1))

CALL WINDW3 (W3arr(1))

X

Y

Z

display area
available

1.0

0.0

0.0 1.0

8th Edition PAGE 2-3

Windows, Viewports and Clipping Last changed: Apr 7, 1995

GPGS-F User’s Guide

The area within the NDC space where the window is to be displayed, is called the
viewport. This is defined by

for a 2-dimensional viewport, and

for a 3-dimensional viewport. V2arr is a 4 element array and V3arr is a 6 element array.
The viewport limits are given in the same sequence as the window, i.e. [Xlow, Xhigh,
Ylow, Yhigh (,Zlow, Zhigh)].

As with the window, the viewport may be changed as many times as required, but only
when there is no picture segment open (picture segments are introduced in Chapter 3).

Programmers should be careful that their windows and corresponding viewports have the
same aspect ratio. If not, the mapping of coordinates onto the display will produce an
unwanted (in most cases) scaling effect.

A complete program example using windows and viewports is shown on page 4-6. The
example also shows how window settings are used to get a zooming effect.

2.1.3 Default Values
GPGS-F will define a default window and viewport, ranging from 0.0 to 1.0 in all three
directions, when initialized. If no transformation is applied, user coordinates and
normalized device coordinates are then identical.

2.1.4 Window and Viewport Dimensions
When 2-dimensional windows and viewports are defined, by WINDW and VPORT, the
Z axis range of either defaults to [0.0 - 1.0]. For most GPGS-F applications, this is of little
significance. However, when clipping is enabled (see next page), the use of WINDW
indicates that only 2-dimensional clipping should take place. Whenever 3-dimensional
clipping is wanted, WINDW3 must be used to specify the clipping limits along the Z axis.

The reason for VPORT3 and 3-dimensional viewports, is to specify the mapping of user
Z coordinates into the NDC space. The Z component of the normalized device coordinate
is used for computing the intensity value when the device supports intensity depth
modulation (page 13-2), and to make it possible to transform NDC values back to window
and user coordinates (page 8-14).

CALL VPORT (V2arr(1))

CALL VPORT3 (V3arr(1))

8th Edition PAGE 2-4

Windows, Viewports and Clipping Last changed: Apr 7, 1995

GPGS-F User’s Guide

2.2 Clipping
If a user coordinate outside the window limits is specified, this will be mapped to a point
outside the viewport limits, and maybe also outside the display area of the output device.
In most cases this is not wanted, and such coordinates should not be part of the display.

To ensure that only parts of the drawing that are inside the window will be part of the
display, lines and other primitives must be clipped.

Clipping a line means that the coordinates of the endpoints are compared with the
boundaries of the window, and the parts of the line that fall outside the window are not
displayed.

Clipping of coordinates is controlled by

where Iswtch=1 enables, and Iswtch=0 disables clipping.

As GPGS-F is initialized, clipping is disabled.

When perspective projection is selected by setting the eye position (see page 6-12), the
clipping algorithm will ensure that points behind the eye will not be displayed.

Clipping could be left disabled if an application knows that all coordinates will be within
the window. The result will of course be correct if clipping is enabled, but this will involve
quite a lot of ‘unnecessary’ computations within GPGS-F.

2.3 Coordinate Processing
The coordinates passed from the application program are processed by GPGS-F before
being displayed on the graphic device. In brief, this processing is made up by the
following steps:

1. The user coordinates are received by
GPGS-F.

CALL CLICTL (Iswtch)

10.0

10.0

8th Edition PAGE 2-5

Windows, Viewports and Clipping Last changed: Apr 7, 1995

GPGS-F User’s Guide

2. The coordinates are transformed by the
GPGS-F transformation matrix (see
Chapter 6) into window coordinates.

3. If clipping is enabled, the primitives are
clipped by the specified window.
The clipped coordinates are passed to
the driver.

4. The device driver will map the
coordinates to NDC according to the
specified viewport.
Finally, the NDC coordinates are
mapped to the physical coordinates
used by the device and displayed.

10.0

10.0

10.0

10.0

1.0

1.0

8th Edition PAGE 2-6

Windows, Viewports and Clipping Last changed: Apr 7, 1995

GPGS-F User’s Guide

8th Edition PAGE 3-1

Introduction to Picture Segments Last changed: Apr 7, 1995

GPGS-F User’s Guide

Chapter 3
Introduction to Picture Segments

A complete GPGS-F picture is a collection of basic graphic primitives such as lines,
circular arcs, text strings etc. GPGS-F requires that these primitives are grouped into
picture segments.

There are no limits on the size of a picture segment, and GPGS-F has no rules on how to
split a picture into segments. Thus, applications that just present a picture on the display,
may define the complete picture as a single picture segment.

To programmers wanting to make more advanced applications, GPGS-F does however
provide features like dynamic picture modifications and picture storing for later reuse
(introduced in Chapter 14). When using these features, the picture segment is the
smallest unit that may be referenced by the application program.

A picture segment is defined and opened by

where Ident is the picture segment identifier. The identifier is stored within GPGS-F as a
Fortran integer type, together with a 4-bit status word. Thus, on computers using 16 bits
integers, the value must be between 1 and 4095, on computers using 32 bits integers the
allowed range is 1 to 268435455.

If segment storing is used, there are some restrictions on whether the same identifier may
be used more than once within an application. These restrictions are given on page 14-2.

If segments are not stored, there are no such restrictions.

When a segment is completed, it must be closed by

Some GPGS-F routines, such as all routines generating graphic output, require that a
segment is opened when called. Other routines, such as the device handling routines
described in Chapter 1, are not allowed to be called when a segment is open. If a routine
is called when not allowed, an error message is generated.

CALL BGNPIC (Ident)

CALL ENDPIC

8th Edition PAGE 3-2

Introduction to Picture Segments Last changed: Apr 7, 1995

GPGS-F User’s Guide

8th Edition PAGE 4-1

Basic Graphic Primitives Last changed: Aug 7, 1995

GPGS-F User’s Guide

Chapter 4
Basic Graphic Primitives

GPGS-F provides routines for drawing all kinds of basic graphic primitives (also called
graphic elements, or picture elements). This chapter describes the routines for drawing
single lines, circular arcs, elliptic arcs and markers (symbols). The other primitives
available with GPGS-F are described in Chapter 7 (text), Chapter 10 (polylines and
curves) and Chapter 12 (polygons and pixel arrays).

All graphic primitives except elliptic arcs are related to the current position. The current
position is defined to be the position of the (logical) pen during drawing. Note that when
a new picture segment is opened, the current position is undefined.

2- and 3-dimensional primitives may be mixed. 2D primitives will then be drawn in the
XY plane at the current, i.e. the last specified, Z coordinate.

4.1 Linetypes
With the routines for drawing single lines, circular arcs, elliptic arcs, polylines and curves,
a linetype is included as one of the arguments. The number of available linetypes is device
dependent, and is specified with the driver descriptions in Appendix E.

Figure 4.1 GPGS-F linetypes.

Linetypes 1 to 5 are standardized by GPGS-F, and will produce the same linepattern with
all devices. The patterns obtained by linetypes 6 and higher are selected by the device
drivers, and will not necessarily be the same on different devices. If the device in use does
not support the specified linetype, a solid line will be drawn.

Linetype 0 is used to move the current position. Although 0 may be specified with any
primitive, it is normally used only with the line drawing routines.

Invisible line 0
Solid line 1
Endpoint 2
Dotted line 3
Dashed line 4
Dash-dot line 5

Linetypes 6 to 9 6
as they are defined 7
by the PostScript 8
driver 9

8th Edition PAGE 4-2

Basic Graphic Primitives Last changed: Aug 7, 1995

GPGS-F User’s Guide

In addition to the predefined linetypes, GPGS-F contains a module allowing the
application to define its own linetypes. This module is described in Chapter 9.

4.1.1 Linepattern Length
To distinguish separate parts of a drawing from each other, using different colours (see
Chapter 11) or linewidths (see Chapter 13) are the preferred methods. If these facilities
are not available, using different linetypes is a obvious choice.

To give the application programmer further possibilities, some device drivers allow the
length of a single pattern segment to be specified by

where Scale is a scaling factor to be applied to the default length defined by the driver.
Which drivers provide this feature is given in Appendix E.

The scaling factor is reset to its default value (1.0) when a picture segment is opened.

4.2 Drawing Single Lines
GPGS-F provides routines for drawing lines in 2 or 3 dimensions, based on floating or
integer coordinates, given either relative to the current position or as absolute values.

The following routines are available:

CALL LPSCAL (Scale)

CALL LINE (X, Y, Ivis)

CALL LINE3 (X, Y, Z, Ivis)

CALL LINER (Dx, Dy, Ivis)

CALL LINER3 (Dx, Dy, Dz, Ivis)

CALL LINI (Ix, Iy, Ivis)

CALL LINI3 (Ix, Iy, Iz, Ivis)

CALL LINIR (Idx, Idy, Ivis)

CALL LINIR3 (Idx, Idy, Idz, Ivis)

8th Edition PAGE 4-3

Basic Graphic Primitives Last changed: Aug 7, 1995

GPGS-F User’s Guide

The arguments supplied specify the endpoint of the line, while the starting point is the
current position. After the line is drawn, the current position is updated to the given
endpoint.

With the LINE.. routines, coordinates are given as floating point numbers, either absolute
(X, Y, Z), or relative to the current position (Dx, Dy, Dz).

With the LINI.. routines, coordinates are given as integers, with the same choice of
absolute (Ix, Iy, Iz) or relative (Idx, Idy, Idz) values.

As shown, the routine names are suffixed with an R to mark the relative routines, and/or
a 3 to mark the 3-dimensional routines.

Integer coordinates are converted to floating point values by GPGS-F before being
processed, i.e. the execution time will not be improved by using LINI.. routines instead of
LINE.. routines.

The Ivis argument specifies the linetype to use, as described on page 4-1.

Linetype 0 is used to move the current position, not only to set the startpoint for lines, but
also to specify the start or reference point for other graphic primitives.

8th Edition PAGE 4-4

Basic Graphic Primitives Last changed: Aug 7, 1995

GPGS-F User’s Guide

Example 4.1 Making a basic 2D drawing from coordinates read
from the user’s terminal.

C *****
C COMPLETE WORKING EXAMPLE
C *****
C
C Default values are used for window and viewport
C
C Initialize the device
C
 PRINT *,'Type GPGS-F device number:'
 READ *, IDEV
 CALL GPGS
 CALL NITDEV(IDEV)
C
C Open a picture segment
C
 CALL BGNPIC(1)
C
 1000 CONTINUE
C
C Read coordinates and linetype.
C A negative linetype marks exit.
C
 READ *, X, Y, IVIS
 IF (IVIS .GE. 0) THEN
 CALL LINE(X,Y,IVIS)
 CALL UPDAT(0)
 GO TO 1000
 ENDIF
C
C Close the picture segment and release the device
C
 CALL ENDPIC
 CALL RLSDEV(IDEV)
 END

Figure 4.2 Running Example 4.1 with a given data set.

Supplied values Comments

72 device number

0.2, 0.2, 0 move to lower left
corner of figure

0.2, 0.5, 1 left edge, solid line

0.4, 0.5, 3 top edge, dotted

0.4, 0.2, 4 right edge, dashed

0.2, 0.2, 5 bottom edge,
dash-dot

0.0, 0.0, -1 to exit

8th Edition PAGE 4-5

Basic Graphic Primitives Last changed: Aug 7, 1995

GPGS-F User’s Guide

Example 4.2 Defining a 3 dimensional house.
 SUBROUTINE HOUSE
C
C Draw house with centre of ground floor at origin.
C
 DIMENSION DZ(2)
 DATA DZ/1.0, -2.0/
C
C Move current position to origin.
C
 CALL LINE3(0.0, 0.0, 0.0, 0)
C
C Draw front and back walls using relative lines.
C
 DO 1000 I=1,2
 CALL LINER3(-1.5,1.5,DZ(I),0)
 CALL LINER(1.5, 1.5, 1)
 CALL LINER(1.5,-1.5, 1)
 CALL LINER(-0.5, 0.5, 0)
 CALL LINER(0.0,-2.0, 1)
 CALL LINER(-2.0, 0.0, 1)
 CALL LINER(0.0, 2.0, 1)
C
C Add a 'window' on the front wall.
C
 IF (I .EQ. 1) THEN
 CALL LINER(0.5,-0.5, 0)
 CALL LINER(1.0, 0.0, 1)
 CALL LINER(0.0,-0.5, 1)
 CALL LINER(-1.0, 0.0, 1)
 CALL LINER(0.0, 0.5, 1)
 CALL LINER(0.5,-1.5, 0)
 ELSE
 CALL LINER(1.0,-2.0, 0)
 ENDIF
 1000 CONTINUE
C
C Draw connecting lines
C
 CALL LINER (-1.5, 1.5, 0)
 CALL LINER3(0.0, 0.0, 2.0, 1)
 CALL LINER (1.5, 1.5, 0)
 CALL LINER3(0.0, 0.0,-2.0, 1)
 CALL LINER (1.5,-1.5, 0)
 CALL LINER3(0.0, 0.0, 2.0, 1)
 CALL LINER (-0.5,-1.5, 0)
 CALL LINER3(0.0, 0.0,-2.0, 1)
 CALL LINER (-2.0, 0.0, 0)
 CALL LINER3(0.0, 0.0, 2.0, 1)
C
 RETURN
 END

Figure 4.3 3D house as defined
in Example 4.2

X

Y

Z

8th Edition PAGE 4-6

Basic Graphic Primitives Last changed: Aug 7, 1995

GPGS-F User’s Guide

Example 4.3 Drawing the same object in different viewports.
C *****
C COMPLETE WORKING EXAMPLE, combined with the previous example.
C *****
C
 DIMENSION WDW1(6), WDW2(6), VP(4)
 DATA WDW1/-2.5,2.5, -0.5,4.5, -2.5,2.5/
 DATA WDW2/-1.5,0.5, 0.5,2.5, -0.5,1.5/
C
C Initialize a device.
C
 READ *, IDEV
 CALL GPGS
 CALL NITDEV(IDEV)
C
C specify a window to contain the complete house.
C
 CALL WINDW3(WDW1)
C
C Set the viewport to the lower left quarter of the display.
C
 VP(1)=0.0
 VP(2)=0.5
 VP(3)=0.0
 VP(4)=0.5
 CALL VPORT(VP)
C
C Draw the house, using the subroutine of the previous example.
C
 CALL BGNPIC(1)
 CALL HOUSE
 CALL ENDPIC
C
C Now look at detail in the upper right hand corner of
C the screen. Set window to contain the detail only.
C
 CALL WINDW3(WDW2)
C
C Change viewport to upper right quarter of the display.
C
 DO 1000 I=1,4
 VP(I)=VP(I)+0.5
 1000 CONTINUE
 CALL VPORT(VP)
C
C Switch clipping on.
C
 CALL CLICTL(1)
C
C Draw the house. All but the detail will be clipped away.
C
 CALL BGNPIC(2)
 CALL HOUSE
 CALL ENDPIC
C
C Release the driver
C
 CALL RLSDEV(IDEV)
 END

8th Edition PAGE 4-7

Basic Graphic Primitives Last changed: Aug 7, 1995

GPGS-F User’s Guide

Figure 4.4 Display of object in different viewports,
using Example 4.3

4.3 Circular Arcs
To create circular arcs in 2 or 3 dimensions, the following routines are available

As with the line drawing routines, the routine names are suffixed with an R to mark the
relative routines, and/or a 3 to mark the 3-dimensional routines.

The dashed square indicate the
default viewport.
The dotted lines indicate the size of
the specified viewports.

CALL CIRC (Xc, Yc, Angle, Ivis)

CALL CIRCR (Dxc, Dyc, Angle, Ivis)

CALL CIRC3 (Xc, Yc, Zc, Xp, Yp, Zp, Angle, Ivis)

CALL CIRCR3 (Dxc,Dyc,Dzc, Dxp,Dyp,Dzp, Angle, Ivis)

CALL CIRD (Xc, Yc, Dangle, Ivis)

CALL CIRDR (Dxc, Dyc, Dangle, Ivis)

CALL CIRD3 (Xc, Yc, Zc, Xp, Yp, Zp, Dangle, Ivis)

CALL CIRDR3 (Dxc,Dyc,Dzc, Dxp,Dyp,Dzp, Dangle, Ivis)

8th Edition PAGE 4-8

Basic Graphic Primitives Last changed: Aug 7, 1995

GPGS-F User’s Guide

Arcs are defined by the current position, which marks the startpoint of the arc, the centre,
and the angle of the arc. After drawing an arc, the current position is updated to the
endpoint of the arc.

Xc, Yc, Zc specify the coordinates of the centre of the arc as absolute coordinates, while
Dxc, Dyc, Dzc specify the centre relative to the current position.

With a 3-dimensional arc, the plane in which the arc is to be drawn is defined by the
current position, the centre of the arc, and an additional third point specified by Xp, Yp,
Zp (absolute coordinates) or Dxp, Dyp, Dzp (relative to the current position). Specifying
this third point to lie on the (extended) line between the startpoint and the centre will not
define a plane, and will result in a GPGS-F error message.

Ivis specifies the linetype to use for drawing the arc, as described on page 4-1.

With the CIRC.. routines, Angle specifies the angle of the arc as radians, with the CIRD..
routines the angle is specified as degrees through Dangle.

For 2D arcs, a positive angle is defined to be counterclockwise direction in the XY plane
when seen from the positive Z axis, as illustrated by the example below.

Example 4.4 Drawing a 2D circle arc.
C
C Move to startpoint of arc.
 CALL LINE(1.0, 1.0, 0)
C
C Draw a 90 degree clockwise arc, with centre defined relative
C to the current position.
 CALL CIRDR(2.0, 0.0, -90.0, 1)
C
C Draw a horizontal line from the endpoint of the arc,
C just to show that the current position has been updated.
 CALL LINER(1.0, 0.0, 1)

Figure 4.5 2D circle arc (defined by Example 4.4).

S: Startpoint of arc
C: Centre of arc
E: Endpoint of arc

X1.0 3.0

Y

1.0

3.0

S

E

C

8th Edition PAGE 4-9

Basic Graphic Primitives Last changed: Aug 7, 1995

GPGS-F User’s Guide

For 3D arcs, positive angle is defined to be counterclockwise direction in the plane of the
arc when seen from the positive Z axis of a local right hand coordinate system. This
coordinate system is defined by the line from the centre of the arc to the current position
(X axis), and the line from the centre pointing in the direction of the third point (Y axis).
The direction of the Z axis then follows from the right hand rule.

This means that the position of the additional point given does not only define the plane
for the arc, but also the direction the arc is to be drawn.

Example 4.5 Drawing circle arcs in the XZ plane.
C
C Move to startpoint of arc.
 CALL LINE3 (1.0, 1.0, 0.0, 0)
C
C Draw a 90 degree solid counterclockwise arc.
C The centre and the third point are given as absolute values.
C
 CALL CIRD3 (1.0, 1.0, 4.0, 6.0, 1.0, 4.0, 90.0, 1)
C
C Using the same startpoint and centre, but a different
C third point, draw a 60 degree dashed counterclockwise arc.
C
 CALL LINE3 (1.0, 1.0, 0.0, 0)
 CALL CIRD3 (1.0, 1.0, 4.0,-1.0, 1.0, 4.0, 60.0, 1)

Figure 4.6 3D circle arc (defined by Example 4.5).
The tick marks on the axes are placed at 1.0, 2.0 etc.
The dotted lines are added just as an attempt to show the
3D position of the start, centre and endpoint.

Following from the rule for defining positive direction for
3D arcs, the 2 arcs are drawn in different directions.
For the solid arc, the local Z axis points ‘down’, for the
dashed arc it points ‘up’.

S: Startpoint of arcs
C: Centre of arcs
E: Endpoint of solid arc
P: Extra point defining

plane of solid arc
Q: Extra point defining

plane of dashed arc X

Y

Z

S

C

E

P

Q

8th Edition PAGE 4-10

Basic Graphic Primitives Last changed: Aug 7, 1995

GPGS-F User’s Guide

4.3.1 Software / Hardware Generation
By default, GPGS-F will generate arcs by using a sequence of short vectors, allowing 3D
arcs to be drawn at any orientation.

If the device in use has got the ability to generate arcs by hardware, this will however in
most cases be faster. Therefore, GPGS-F allows the user to select whether to use hardware
or software generation by

Isw = 0 (zero) selects hardware generation, Isw = 1 selects software.

When drawing 3D arcs, either by using the 3D circle routines, or drawing 2D arcs in a
transformed XY plane, the projection onto the display surface will be an elliptic arc.
Using hardware generation for such arcs will (with most devices) not give the correct
result, as the device hardware is capable of drawing arcs only in the XY plane of the
display.

4.3.2 Circle Smoothness
If the Isw argument to SOFCIR is set to a value greater than 1, the value specifies the
number of vectors that form the complete circle of which the arc is a part.

A second method of specifying the smoothness of circles, is to set the circle
approximation tolerance directly by

Dist is the maximum distance, in user coordinates, between the mathematical correct
circle and the approximated circle.

Figure 4.7 Effect of CIRAPR.

If both CIRAPR and SOFCIR is used to set circle smoothness, GPGS-F will use the
value supplied by the most recent call.

CALL SOFCIR (Isw)

CALL CIRAPR (Dist)

Dist

8th Edition PAGE 4-11

Basic Graphic Primitives Last changed: Aug 7, 1995

GPGS-F User’s Guide

4.4 Elliptic Arcs
An ellipse or elliptic arc is drawn by

Xcn and Ycn specifies the centre, Xrad and Yrad the length of the radius in X and Y
direction.

Ang0 specifies the start angle of the arc, measured from the X axis of the ellipse. If a
complete ellipse is to be drawn the value of Ang0 is of no importance. Angle is the angle
of the arc to draw, and Rotang is the rotation angle from the system X axis to the X axis
of the ellipse. All angles are to be given as radians.

Ivis specifies the GPGS-F linetype to use for drawing. as described on page 4-1.

Elliptic arcs are drawn in the XY plane at the current Z coordinate. The X and Y
components of the current position are not used. After drawing, the current position is
however updated to the end of the arc.

Example 4.6 Drawing a elliptic arc and an ellipse.
 CALL ELIP(7.0, 6.0, 3.0, 2.0, PI/4.0, PI, 0.0, 1)
 CALL ELIP(14.0, 6.0, 3.0, 2.0, 0.0, 2.0*PI, PI/4.0, 1)

Figure 4.8 Elliptic arc and ellipse (defined by the example above).

The arc (left) is defined by:
 CALL ELIP(4.0, 3.0, 3.0, 2.0, PI/4.0, PI, 0.0, 1)

The ellipse (right) is defined by:
 CALL ELIP(11.0, 3.0, 3.0, 2.0, 0.0, 2.0*PI, PI/4.0, 1)

CALL ELIP (Xcn, Ycn, Xrad, Yrad,
Ang0, Angle, Rotang, Ivis)

4 14

3

X

Y

8th Edition PAGE 4-12

Basic Graphic Primitives Last changed: Aug 7, 1995

GPGS-F User’s Guide

4.5 Markers
The purpose of markers is mainly to mark positions in the display surface. Because of this,
markers are handled a bit different than other primitives by GPGS-F.

A marker (symbol) is drawn by

where Imar specifies which marker to draw. The centre of the marker is placed at the
current position, which is left unchanged afterwards.

The default size of a marker is determined by the device driver (normally 3-4 mm). The
size may be changed by

where Size gives the marker size in Normalized Device Coordinates (see page 2-2). The
size may be reset to its default by setting Size to 0.0. The marker size is independent of
the current window and viewport setting, and a given value of Size does not give the same
physical size on different devices.

Setting the marker size to a given device independent physical size is still possible, using
the same method as when making true scale plots. This is described in Chapter 5.

The drawing of markers is left to the device driver. If possible, the markers are drawn by
device hardware using some sort of symbol font. If not, the markers are software
simulated within the driver, and will appear as shown in Figure 4.9.

Markers are always drawn in the display plane, independent of the orientation of the user
coordinate system, i.e. the markers are not affected by any of the modelling
transformations described in Chapter 6.

Figure 4.9 Standard software simulated markers.

Markers are often used to mark points on curves and other business graphics type of plots.
The fact that markers may appear different on different devices is then not very fortunate.
However, the GRAPHISTO package (the business graphics add-on to GPGS-F) does
contain its own set of markers to use for such plots.

CALL MARKER (Imar)

CALL MSIZE (Size)

0 1 2 3 4 5 6 7 8

8th Edition PAGE 5-1

Drawing in True Scale Last changed: Apr 7, 1995

GPGS-F User’s Guide

Chapter 5
Drawing in True Scale

The window to viewport mapping method will, as described in Chapter 2, make the
application programs independent of the physical size of the actual device in use.
However, this obviously means that the physical size of the plot depends on the device.
In some cases, this is not wanted, i.e. the size of a plot should be the same no matter what
device is used.

To achieve this, the viewport limits must be calculated based on the size of the device. The
physical dimensions of the current device is obtained by

Farr will return Ilthf floating point numbers. Farr(1) and Farr(2) gives the extension in
X and Y direction of the display surface, given in Normalized Device Coordinates. That
is, these are the maximum values that may be used for specifying the viewport in X and
Y direction. Following from the definition on page 2-2, one of these will always be 1.0,
the other one will be larger.

Farr(3) gives the NDC extension in Z direction. For 2D devices, a value of 10000.0 will
be returned, marking that any value may be used with the viewport specification.

Through Farr(4), the physical length in meters of the default viewport size is returned,
i.e. the length from 0.0 to 1.0 in normalized device coordinates.

DATDEV may also be used for getting a lot of other information about the current device
driver. A complete description is given on page 23-4.

Example 5.1 Returned DATDEV data from a flatbed plotter.
Farr(1) = 1.25 (NDC)
Farr(2) = 1.0 (NDC)
Farr(3) = 10000.0 (NDC), shows that this is a 2D device
Farr(4) = 1.20 (meters)

These values show that the display surface of the plotter is 1.20
meters in the Y direction, and 1.50 meters (1.20 meters × 1.25)
in the X direction.

Given the values returned from DATDEV, the NDC value Vndc corresponding to the
physical size Vm (in metres) is simply computed as:

Vndc = Vm / Farr(4)

CALL DATDEV (Idum, 0, Farr(1), Ilthf)

8th Edition PAGE 5-2

Drawing in True Scale Last changed: Apr 7, 1995

GPGS-F User’s Guide

Example 5.2 Drawing a map in scale 1:5000.
Purpose of the example:

We want to plot a map in scale 1:5000, using the ground
coordinates in meters as input.
A suitable map size is 64 by 48 cm, which gives room for an area
of 3200 by 2400 meters. The actual coordinate area we want to
map, is between 0.0 and 3200.0 in X, and between 2400.0 and
4800.0 in Y direction.
We want a margin of 5 cm below and to the left of the map.

Program code:
C
C Declare necessary arrays, and set values in the window array.
 DIMENSION WDW(4),VP(4),FARR(4)
 DATA WDW/0.0,3200.0,2400.0,4800.0/
C
C Initialize GPGS-F and the device driver.
 CALL GPGS
 CALL NITDEV (idev)
C
C Set the window to 0-3200 in X, and 2400-4800 in Y direction.
 CALL WINDW (WDW)
C
C Get physical dimensions of the device in use
 CALL DATDEV (IDUM, 0, FARR, 4)
C
C Compute and set the viewport. In meters this is to be
C from 5 to 5+64 cm in X direction,
C from 5 to 5+48 cm in Y direction
 VP(1)=0.05 / FARR(4)
 VP(2)=VP(1) + 0.64 / FARR(4)
 VP(3)=0.05 / FARR(4)
 VP(4)=VP(3) + 0.48 / FARR(4)
 CALL VPORT(VP)
C
C Ready to plot the map, using meters as user coordinates.

Display
surface

User
coordinates

0 3200
2400

4800

64 cm

48
 c

m

5 cm

8th Edition PAGE 5-3

Drawing in True Scale Last changed: Apr 7, 1995

GPGS-F User’s Guide

Some plotter packages address the display surface directly in physical units, e.g.
millimetres or inches. Applications using such packages may easily be converted to using
GPGS-F without having to convert the coordinates.

Example 5.3 Addressing the display surface using millimetres.
Purpose of the example:

We want to set up a window / viewport mapping that allows the
application to address the display surface directly using
millimetres as units.
If the plot is larger than the device in use, we want to show as
much as possible of it.

Program code:
C
 DIMENSION WDW(4), VP(4), FARR(4)
C
C Initialize GPGS-F and the device driver.
 CALL GPGS
 CALL NITDEV (idev)
C
C Get physical dimensions of the device in use.
 CALL DATDEV (IDUM, 0, FARR, 4)
C
C Specify a viewport covering the complete display surface.
 VP(1) = 0.0
 VP(2) = FARR(1)
 VP(3) = 0.0
 VP(4) = FARR(2)
 CALL VPORT(VP)
C
C Specify a window that corresponds to the viewport limits,
C converted to millimetres.
C
 WDW(1) = 0.0
 WDW(2) = FARR(1)*FARR(4)*1000.0
 WDW(3) = 0.0
 WDW(4) = FARR(2)*FARR(4)*1000.0
 CALL WINDW (WDW)
C
C Switch clipping on, in case the plot is larger than
C the actual device being used.
 CALL CLICTL(1)
C
C Ready to draw using millimetres as user units.

8th Edition PAGE 5-4

Drawing in True Scale Last changed: Apr 7, 1995

GPGS-F User’s Guide

8th Edition PAGE 6-1

Transformations Last changed: Apr 7, 1995

GPGS-F User’s Guide

Chapter 6
Transformations

GPGS-F provides two groups of transformation routines. The first one, described in this
chapter, is called modelling transformations. Modelling transformations are used by the
application programs to model the objects.

The second group of transformations is called image transformations. These are used to
manipulate the picture after it has been displayed. Image transformations are described in
Chapter 18.

6.1 System Transformation Matrix
Each object, or part of an object, is defined in its own local coordinate system. This
coordinate system is transformed into the window coordinate system by the GPGS-F
system transformation matrix. Whenever a transformation routine is called, the system
matrix will change.

Changing the matrix will not affect objects already displayed.

Initially, the system transformation matrix is set to the identity matrix, and may be reset
to this setting at any time by

When the transformation matrix equals the identity matrix, user coordinates and window
coordinates are equal.

CALL IDEN

8th Edition PAGE 6-2

Transformations Last changed: Apr 7, 1995

GPGS-F User’s Guide

6.2 Basic Transformation Routines
To illustrate the effect of the transformation routines, the HOUSE subroutine shown on
page 4-5 is used. The initial user coordinate system is drawn with solid axes and marked
XYZ. The transformed coordinate system is drawn with dashed lines and marked X'Y'Z'.
When 2 transformations are illustrated by the same figure, the axes resulting from the first
transformation is drawn dashed, the final axes are drawn as dash-dot lines.

As explained in Chapter 2, the Z axis initially points from the display surface towards the
viewer. Thus, to make the Z axis visible in the figures, the AXON routine (see page 6-12)
is called prior to the basic transformation routines shown with the individual figures.

Example 6.1 Program used to illustrate transformations.
C
C Set the window limits. Symmetric around the origin.
C Large enough to contain the transformed house.
C
 REAL WDW(6)
 DATA WDW/-7.5,7.5, -7.5,7.5, -7.5,7.5/
C
 CALL GPGS
 CALL NITDEV(IDEV)
 CALL WINDW3(WDW)
C
 CALL BGNPIC(1)
 CALL AXON(5.0, 4.0, 9.0)
C
C TRANSF is one (or more) of the basic transformation routines.
C Each figure will show what routine(s) was actually used.
 CALL TRANSF()
C
 CALL HOUSE
 CALL ENDPIC
 CALL RLSDEV(IDEV)
C
C The code for drawing the axes is not included here.

Figure 6.1 The object used to illustrate transformations.

The house as it will appear
when no transformation
routine is called.

The tick marks are placed at
positions 1.0, 2.0 and 3.0 along
the axes.

Y

Z
X

8th Edition PAGE 6-3

Transformations Last changed: Apr 7, 1995

GPGS-F User’s Guide

6.2.1 Translation
Translation means that the coordinates received by GPGS-F are shifted by the specified
distances parallel to the coordinate axes. A 2-dimensional translation is specified by

which will change each input X coordinate by Xdisp and each input Y coordinate by
Ydisp.

The corresponding 3-dimensional routine is defined as

adding Zdisp to each input Z coordinate.

Figure 6.2 3-dimensional translation.

CALL XLAT3 (3.0, 0.0, 1.5)

CALL XLAT (Xdisp, Ydisp)

CALL XLAT3 (Xdisp, Ydisp, Zdisp)

Y

Z X

Y'

Z' X'

8th Edition PAGE 6-4

Transformations Last changed: Apr 7, 1995

GPGS-F User’s Guide

6.2.2 Scaling
The input coordinates may be scaled by

where Scale is the scaling factor to by applied to the coordinates along the Iaxis axis
(1=X, 2=Y, 3=Z).

If Iaxis is set to 0 (zero), coordinates are scaled along all three axes.

Figure 6.3 Scaling along the X axis.

6.2.3 Rotation
To rotate the input coordinates around one of the axes of the coordinate system, the axis
to rotate around and the angle to rotate must be specified. A positive angle of rotation is
defined to be counterclockwise when looking towards the origin from a point on the
positive part of the axis, as illustrated by the figure below.

Figure 6.4 Positive direction of rotation.

CALL SCAL (0.5, 1)

CALL SCAL (Scale, Iaxis)

Y

Z

X

Y'

Z' X'

Y

Z
X

8th Edition PAGE 6-5

Transformations Last changed: Apr 7, 1995

GPGS-F User’s Guide

Rotation is specified by

where Angle is the rotation angle in radians, or by

where Dangle is the angle in degrees. Iaxis specifies the axis to rotate around (1=X, 2=Y,
3=Z).

Figure 6.5 Clockwise rotation around the Z axis.

There is no separate routine for 2D rotation, as this is equivalent to rotating around the Z
axis, i.e. around the origin of the XY plane.

A 2D rotation is often used to change the orientation of a plot from landscape to portrait
mode. In doing so, the position of the rotated plot will depend on the window limits. If the
default window is used, and the only transformation applied is a 90 degree rotation, the
complete plot will be rotated out of the window. To avoid this, the rotation must be
combined with a translation.

Rotation around an arbitrary point in 3D space is achieved by using the sequence:

 CALL XLAT3 (DX, DY, DZ)
 CALL ROTAD (Dangle, Iaxis)
 CALL XLAT3 (-DX, -DY, -DZ)

CALL ROTAD (-30.0, 3)

CALL ROTA (Angle, Iaxis)

CALL ROTAD (Dangle, Iaxis)

Y

Z

X

Y'

Z'

X'

8th Edition PAGE 6-6

Transformations Last changed: Apr 7, 1995

GPGS-F User’s Guide

6.2.4 Shearing
Applying a shearing transformation to a point means that the value along one axis is
changed by adding the value along one of the other axes multiplied by a constant value
(the sharing factor).

Shearing is specified by

defining the new values of coordinates along the Iaxis1 axis to be computed by
Coord(Iaxis1) = Coord(Iaxis1) + Shear × Coord(Iaxis2)

Iaxis1 and Iaxis2 are defined as for the other transformation routines (1=X, 2=Y, 3=Z).

Figure 6.6 Shearing the Y axis in X direction.

Shearing in not very commonly used, except when drawing text. In that case, the SHEA
routine is however not necessary, as there is a separate routine available to specify
shearing of text only (see page 7-5).

CALL SHEA (1.0, 1, 2)

CALL SHEA (Shear, Iaxis1, Iaxis2)

Y

Z

X
Z'

X'

Y'

8th Edition PAGE 6-7

Transformations Last changed: Apr 7, 1995

GPGS-F User’s Guide

6.2.5 Vanishing Point
Using the basic transformation routines described so far, will produce an axonometric
projection of the object into the display plane. This means that one user unit will have the
same physical length no matter how far from the eye the object is.

In many cases, depending on what kind of object is to be drawn, using a perspective
projection will give a more realistic image. Perspective projection may also be used to
emphasize the 3D effect.

The normal method for specifying a perspective projection with GPGS-F is to set the eye
position by using the PERS routine (see page 6-12).

GPGS-F does however allow the vanishing point for a perspective transformation to be
explicitly set by

where Xvan, Yvan and Zvan are the reciprocal values of the coordinates for the
vanishing point.

The effect of setting a vanishing point, is that lines defined to be parallel to the line passing
through origin and the specified vanishing point, will be projected so that they will meet
at the given point.

Initially the vanishing point is at infinity, which is equal to setting all three arguments to
zero (zero is defined to be the reciprocal of infinity).

Figure 6.7 Vanishing point.

When the PERS routine is used to specify perspective projection, the vanishing point will
be set by GPGS-F (see page 6-16).

Specify a vanishing point on the
negative Z axis.

CALL VANS (0.0, 0.0, -1.0/12.0)

CALL VANS (Xvan, Yvan, Zvan)

Y

Z X

Y'

Z' X'

8th Edition PAGE 6-8

Transformations Last changed: Apr 7, 1995

GPGS-F User’s Guide

6.3 Combining Basic Transformations
To achieve the required effect, basic transformations may be called in any sequence. The
effect of transformations is cumulative, the final transformation being effected by all
previous transformations.

By default, transformations are performed in space mode (detailed description on page
6-16), i.e. new transformations are post-multiplied with the old system matrix to build the
new system matrix.

The effect of this is that when a transformation routine is called, the specified
transformation is relative to the current transformed coordinate system. Thus, the visual
effect will change if the transformation sequence is changed.

Figure 6.8 Combining basic transformations, rotate and shift.

Figure 6.9 Combining basic transformations, shift and rotate.

CALL ROTAD(-30.0, 2)
CALL XLAT3(3.0, 0.0, 1.5)

The rotation is relative to the
initial axes (drawn solid). The
translation is then relative to
the rotated axes (drawn
dashed).

CALL XLAT3(3.0, 0.0, 1.5)
CALL ROTAD(-30.0, 2)

As shown, the orientation of
the house is as in the figure
above, but because of the
changed transformation
sequence, the position is not.

Y

Z X

Y'

Z'

X'

Y''

X''

Z''

Y

Z
X

Y''

X''

Z''

Y'

Z' X'

8th Edition PAGE 6-9

Transformations Last changed: Apr 7, 1995

GPGS-F User’s Guide

6.4 Transformation Matrix Manipulation
Pictures are frequently built up of picture parts, each of which must be translated and
rotated before display. A picture part is a collection of graphic elements that form a
recognizable object on a display.

Quite often, several picture parts require the same set of transformations. If the parts are
not drawn in sequence, but intermixed with parts using other transformations, there is a
need to return the transformation matrix to some previous state.

6.4.1 Internal Matrix Stack
To simplify the operation of returning the transformation matrix to a previous state, a
facility for stacking transformation matrices inside GPGS-F is provided.

A copy of the current transformation matrix is put on the stack by

This does not change the transformation matrix.

The top matrix is restored from the stack, and made the current transformation matrix, by

This will remove the matrix from the top of the stack. A maximum of 10 matrices may be
stored in the stack.

Note that ENDTRN, in addition to restoring the transformation matrix, will reset the
transformation mode (see page 6-16) to the state it was when the corresponding
BGNTRN was called.

Example 6.2 Draw an untransformed object within
a transformed object.

 .
C
C Set up transformations for transformed object.
C
 CALL SetupTrans()
C
C Draw transformed object
C
 CALL DrawObj1()
C
C Then draw an untransformed object.
C
 CALL BGNTRN
 CALL IDEN
 CALL DrawObj2()
 CALL ENDTRN
C
C Continue with same transformation as before BGNTRN.

CALL BGNTRN

CALL ENDTRN

8th Edition PAGE 6-10

Transformations Last changed: Apr 7, 1995

GPGS-F User’s Guide

6.4.2 Direct User Manipulation
As an alternative to saving transformation matrices on the GPGS-F stack, it is also
possible to copy the matrix into an application declared 4 × 4 array by

When using Fortran, Tmat must be declared by

 REAL Tmat (4,4)

At some later time, this matrix may be copied back by

resetting the transformation to the state it was when SAVTRN was called. The advantage
of using SAVTRN / TRAN instead of BGNTRN / ENDTRN, is that when several
matrices are saved, they need not be restored in the same sequence. In addition, the same
matrix may be copied back more than once.

The matrix supplied through TRAN need not necessarily be one that has been fetched by
SAVTRN. Programmers familiar with the construction of 4 × 4 homogeneous coordinate
transformation matrices may well build this matrix directly.

To those wanting to see how GPGS-F describes a single transformation by a 4 × 4
matrix, just examine the matrix returned by SAVTRN.

In addition to replacing the system matrix with an application supplied matrix using
TRAN, GPGS-F allows the application matrix and the system matrix to be combined
using

This will pre- or post-multiply Tmat with the current system matrix according to the
current transformation mode (see page 6-16).

The following example shows how to avoid execution of the same trigonometric
operations when performing a sequence of rotations. The rotation matrix is saved, and
later used for concatenating. With more complex transformations involved, using this
approach may speed up execution time quite a lot.

CALL SAVTRN (Tmat(1,1))

CALL TRAN (Tmat(1,1))

CALL COMP (Tmat(1,1))

8th Edition PAGE 6-11

Transformations Last changed: Apr 7, 1995

GPGS-F User’s Guide

Example 6.3 Combining transformation matrices.
C ****
C Complete working example
C ****
C
 DIMENSION WDW(6), TMAT(4,4)
 DATA WDW/-5.0,5.0, -5.0,5.0, -5.0,5.0/
C
 PART=48.0
 IPART=INT(PART)/2
C
 READ *, IDEV
 CALL GPGS
 CALL NITDEV(IDEV)
 CALL WINDW3(WDW)
C
C Save the matrix specifying a 360/48 degree rotation around Y.
C
 CALL ROTAD(360.0/PART,2)
 CALL SAVTRN(TMAT)
C
C Reset matrix to identity, set eye position
C (to see that it’s really 3D).
C
 CALL IDEN
 CALL AXON(0.0, 4.0, 9.0)
 CALL BGNPIC(1)
C
C Draw the 'front' of the globe, by drawing 180 degree arcs
C in the XY plane.
C
 CALL LINWID(3.0)
 DO 1000 I=1,IPART
 CALL LINE(0.0, 3.0, 0)
 CALL CIRD(0.0, 0.0, 180.0, 1)
C
C Apply the rotation by combining TMAT and the system matrix.
C
 CALL COMP(TMAT)
 1000 CONTINUE
C
C Draw the back of the globe, using thinner lines.
C
 CALL LINWID(1.0)
 DO 1100 I=1,IPART
 CALL LINE(0.0,3.0,0)
 CALL CIRD(0.0,0.0,180.0,1)
 CALL COMP(TMAT)
 1100 CONTINUE
C
 CALL ENDPIC
 CALL RLSDEV(IDEV)
 END

8th Edition PAGE 6-12

Transformations Last changed: Apr 7, 1995

GPGS-F User’s Guide

Figure 6.10 Drawing produced by Example 6.3

6.5 Viewing Routines
The basic transformation routines are well suited for building complex objects from
smaller parts. Side or top views may also easily be specified by using these routines.

Using basic transformations to define how to see an object from an arbitrary point in 3D
space, is however not very convenient. For this purpose, the GPGS-F viewing routines are
easier to use.

There are two viewing routines available. These are

to specify axonometric projection, and

to specify perspective projection.

With PERS, Xeye, Yeye and Zeye are the coordinates of the eye position from which
to view the objects. With AXON, the values specify the direction from the origin towards
the eye, as the position of the eye (by definition) is at infinity.

As with the other transformation routines, the values supplied through the viewing
routines are relative to the current transformed coordinate system.

Although it is not illegal to use different eye positions for various picture parts, normally
the same view is used for the complete picture. The most common approach is then to first
specify the eye position, which will then be relative to the window origin, and later use
the basic transformation routines for building the objects.

CALL AXON (Xeye, Yeye, Zeye)

CALL PERS (Xeye, Yeye, Zeye)

8th Edition PAGE 6-13

Transformations Last changed: Apr 7, 1995

GPGS-F User’s Guide

The initial viewing condition, set as GPGS-F is initialized or by a call to IDEN (see page
6-1), corresponds to calling AXON with Xeye and Yeye set to zero, and Zeye to a
positive value, i.e. the eye is at infinity on the positive Z axis.

Figure 6.11 Axonometric and perspective projection.

AXON and PERS implies rotations of the coordinate system. The new Z axis points from
the origin towards the viewer, the new Y axis is kept upwards.

When specifying the window limits, these rotations must be considered. If, for example,
the window limits in X direction are 0.0 and 10.0, with an object between 2.0 and 8.0, the
object will be rotated completely out of the window if seen from behind (by specifying
the eye position to be on the negative Z axis).

To make sure the objects stay within the window, no matter what eye position is used, the
window should be symmetric around the origin, and the object defined with its centre at
the origin.

CALL AXON (5.0, 4.0, 9.0)

CALL PERS (5.0, 4.0, 9.0)

Y

Z
X

Y

Z X

8th Edition PAGE 6-14

Transformations Last changed: Apr 7, 1995

GPGS-F User’s Guide

6.5.1 Focal Point
When issuing a call to PERS specifying the eye position, the focal point will be at the
current origin. Thus, although there is no GPGS-F routine to set the focal point, this may
still be specified by moving the origin prior to setting the eye position. To return the object
back to its original position within the window, the origin should be translated back
afterwards.

Figure 6.12 Setting the focal point.

Draw 2 houses, one at
origin and one moved 4
units along the X axis,
using the default focal
point.

CALL PERS(2.0,4.0,9.0)
CALL HOUSE
CALL XLAT(4.0, 0.0)
CALL HOUSE

Use the same drawing
sequence as above, but
move the origin to a point
between the houses
before setting the eye
position.

CALL XLAT(2.0, 0.0)
CALL PERS(0.0,4.0,9.0)
CALL XLAT(-2.0, 0.0)
CALL HOUSE
CALL XLAT(4.0, 0.0)
CALL HOUSE

The eye position, relative
to the window origin, is the
same as above.

Y

Z

X

Y

Z

X

8th Edition PAGE 6-15

Transformations Last changed: Apr 7, 1995

GPGS-F User’s Guide

During perspective projection, X, Y and Z coordinates are scaled up for points between
the eye position and the focal point. As a point approaches the eye, the transformed
coordinates approach infinity. The coordinates of points behind the focal point are scaled
down. This is visualized in Figure 6.13.

When specifying windows, this coordinate scaling effect must be taken into account.

Figure 6.13 Effect of perspective projection.

Top: Untransformed objects. The focal point is at the centre of the
square marked 3, the X and Y axes are drawn in the
projection plane.

Bottom: Transformed objects, showing the scaling of coordinates
depending on the position relative to the eye position and the
focal point. Note that coordinates in the projection plane are
not scaled.

1
2

3
4

5

1 2 3 4 5

Eye

Eye

Y

Z

X

X

Y

8th Edition PAGE 6-16

Transformations Last changed: Apr 7, 1995

GPGS-F User’s Guide

6.5.2 Vanishing Point
As described on page 6-7, perspective projection could be achieved by explicitly
specifying the vanishing point.

When PERS is used, GPGS-F will set the vanishing point at the viewing line, i.e. the line
from the eye through the focal point. The distance from the focal point will be the same
as the distance to the eye, but in the opposite direction.

The vanishing point is the point where the extension of lines defined to be parallel to the
viewing line will meet after being transformed. To be precise, the vanishing point does
not only specify a point, but a vanishing plane. The plane is perpendicular to the viewing
line, at the specified point. Any lines defined to be parallel, will, if extended, meet at some
point in this plane. The only exception is when the lines are perpendicular to the viewing
line.

There is no need to define special treatment of points behind the vanishing point, as this
is an impossible situation. An untransformed point behind the focal point will be
transformed to be between the focal point and the vanishing point. As the untransformed
point approaches infinity, the transformed point will approach the vanishing point.

6.6 Transformation Mode
Whenever a transformation routine is called, GPGS-F will build a matrix describing the
specified transformation. This matrix is then multiplied with the current system matrix to
build the new system matrix.

When the new matrix is post-multiplied with the system matrix (S' = S × T) the
transformation is said to be performed in space mode. This is the default mode and implies
that each new transformation is relative to the current user coordinate system.

If instead the new matrix is pre-multiplied with the system matrix (S' = T × S) the
transformation is performed in picture mode. In this case, new transformations are
specified in terms of the initial user coordinate system, i.e. the window.

Which transformation mode to use is selected by

where Imod=1 specifies picture mode, and Imod=0 specifies space mode.

Note that when a transformation matrix is pushed on the stack by BGNTRN (see page
6-9), the transformation mode will be saved as well. When the matrix is restored by
ENDTRN, the transformation mode will also be restored.

CALL MODTRN (Imod)

8th Edition PAGE 6-17

Transformations Last changed: Apr 7, 1995

GPGS-F User’s Guide

Figure 6.14 Transformations in space and picture mode.

Space mode (default)

CALL ROTAD (-30.0, 2)
CALL XLAT3(3.0, 0.0, 1.5)

The translation is relative to
the rotated (dashed) axes.

Picture mode

CALL MODTRN (1)
CALL ROTAD (-30.0, 2)
CALL XLAT3(3.0, 0.0, 1.5)

The translation is relative to
the initial (solid) axes.

Y

Z X

Y''

X''

Z''

Y'

Z'

X'

Y

Z X

Y'
Y''

X'

X''

Z'

Z''

8th Edition PAGE 6-18

Transformations Last changed: Apr 7, 1995

GPGS-F User’s Guide

8th Edition PAGE 7-1

Character Strings Last changed: May 10, 1995

GPGS-F User’s Guide

Chapter 7
Character Strings

Although a picture says more than a thousand words, some text is still needed with most
graphic applications.

To draw a text string, GPGS-F needs a reference position, and of course the text string
itself. Other aspects, such as size, orientation, alignment etc., are set by separate routines.
None of these need to be used, as default values are supplied by GPGS-F.

The reference position of text is the current position. In most cases this will be set by one
of the LIN.. routines (see page 4-2), but text may be drawn following any graphic
primitive that defines the current position.

By default, the current position marks the lower left hand corner of the first character (may
be changed by the CJUST routine, see page 7-7). After drawing the string, the current
position is set to the lower right hand corner of the last character.

Text is always created in the XY plane at the current Z coordinate. 3D text is achieved by
transforming the XY plane within the 3D space.

7.1 Drawing Text Strings
A text string is drawn by

where Chstri is a character variable, a character array element or a character constant.
The string is terminated either when all characters in the string are drawn or when the
sequence ‘*.’ is encountered (see next page).

For compatibility with previous versions of GPGS-F, text may also be drawn by

where Iarr contains a string in Hollerith compatible format (one ASCII value in each
byte), or by

where Iarr is an array of characters in A1 format, and Ilth is the number of characters
to draw.

When CHARS is used, the string must be terminated by the sequence ‘*.’, as the
length of the string is not supplied.

CALL CHARC (Chstri)

CALL CHARS (Iarr(1))

CALL CHARA (Iarr(1), Ilth)

8th Edition PAGE 7-2

Character Strings Last changed: May 10, 1995

GPGS-F User’s Guide

7.1.1 Format Control
To allow the user some control over the format of the characters in the supplied string,
GPGS-F recognizes certain character combinations for format controls. The first of the
two format control characters is the system escape character and the second indicates the
action to be performed.

The default system escape character is ‘*’ (ASCII value 42), but it may be changed by

where Ichar is the new escape character to precede any format codes. Ichar is given in
integer A1 format.

The A1 format is not standardized. On some computers the ASCII value must be put
in the left byte, on others in the right byte. To keep the code as machine independent
as possible, the same value could be put into all bytes of the integer Ichar. This will
work because GPGS-F extracts just the interesting byte, it does not care about the rest
of the integer (according to the Fortran definition, the other bytes should be set to the
ASCII value of space).

Table 7.1 Format control sequences.

*L and *U are retained from the ancient days when Fortran allowed upper
case characters only.

Example 7.1 Using format control.

Note that if a string is ended by ‘*N’, the current position is set to one line below the
starting character. Thus, left aligned lines of text may be drawn without explicitly
positioning each individual line even when CHARC is invoked more than once.

Sequence Action to perform

** Draw the * character.

*. End of string.

*L Switch to lower case.

*U Switch to upper case.

*N New line (line feed + carriage return).

*C Carriage return.

*S Compose 8 bit character (see page 7-10).

The statement CALL CHARC('3 lines of text*Nusing a*Nsingle call')

will result in
3 lines of text
using a
single call

CALL CESCAP (Ichar)

8th Edition PAGE 7-3

Character Strings Last changed: May 10, 1995

GPGS-F User’s Guide

7.2 Drawing Integer and Real Numbers
The value of integer and real variables or constants may be drawn as text without first
converting to a character string by the application program.

Integer numbers are drawn by

where Intno is the integer variable or constant and Length is the number of character to
use for the string. This corresponds to the Fortran format specification ‘Iw’.

Floating point variables are drawn by

corresponding to the Fortran format ‘Fw.d’ (Length=w, Lfrac=d), or by

corresponding to the Fortran format ‘Ew.d’.

The generated string is filled with leading spaces to get the specified length. If the length
is specified too small, the string is filled with asterisks.

Below is shown several examples of text strings generated by the number drawing
routines. Note that GPGS-F allows floating point numbers to be written with no fraction
part, and that the leading 0 for numbers between 0 and 1 need not be written.

Example 7.2 Strings generated by CHARI, CHARF and CHARE.
Subroutine call Resulting text string
CHARI (1234, 4) 1234
CHARI (12, 4) 12
CHARF (12.36, 6, 3) 12.360
CHARF (12.36, 5, 2) 12.36
CHARF (12.36, 4, 1) 12.4
CHARF (0.123, 5, 3) 0.123
CHARF (0.123, 4, 3) .123
CHARF (123.0, 5, 1) 123.0
CHARF (123.0, 4, 1) ****
CHARF (123.0, 4, 0) 123.
CHARE (0.127, 9, 3) 1.270E-01
CHARE (0.127, 9, 2) 1.27E-01
CHARE (0.127, 9, 1) 1.3E-01
CHARE (16000.0, 8, 2) 1.60E+04
CHARE (16000.0, 8, 1) 1.6E+04

CALL CHARI (Intno, Length)

CALL CHARF (Flpno, Length, Lfrac)

CALL CHARE (Flpno, Length, Lfrac)

8th Edition PAGE 7-4

Character Strings Last changed: May 10, 1995

GPGS-F User’s Guide

7.3 Character Size
The size of graphic text is set by

where Xspace and Yspace specifies the size of the character space, including character
and line spacing. The values are given in user coordinates.

By default, GPGS-F defines a character size giving 40 lines of 80 characters within the
current window, i.e. when the default window (0.0 to 1.0) is current, Xspace=1/80,
Yspace=1/40. If the window limits are changed and CSIZES has not been called,
GPGS-F will change the character size to 1/80 by 1/40 of the new window. If CSIZES
has been called, changing the window will not affect the character size values.

As the character space is given in user coordinates, the method described in Chapter 5
may be used to specify the character size in a given physical unit.

Within the character space, a letter occupies a smaller rectangle, set by

where Xlett and Ylett are specified as fractions of the character space, i.e. the size of the
letter is Xspace×Xlett in X direction and Yspace×Ylett in Y direction. Following from
this, the spacing between letters will be Xspace×(1-Xlett) and the line spacing will be
Yspace×(1-Ylett).

The default values are 0.7 for Xlett and 0.5 for Ylett, i.e. the height to width ratio of the
letter size is 1.0 to 0.7

Figure 7.1 Character size definition.

When using default values for CSIZEL, and setting the character height to twice the width
through CSIZES, the character spacing and aspect ratio will be as defined by the software
font designer. When using hardware text (see page 7-6), text will appear as defined by
device hardware.

Using the default values will in most cases give satisfactory results, but there are no
limitations to the values that may be used with CSIZES and CSIZEL, allowing any size,
spacing and aspect ratio to be obtained.

The dashed lines show the
character space,
the dotted lines show the
letter size.

CALL CSIZES (Xspace, Yspace)

CALL CSIZEL (Xlett, Ylett)

8th Edition PAGE 7-5

Character Strings Last changed: May 10, 1995

GPGS-F User’s Guide

7.4 Character Transformations
As mentioned on page 7-1, graphic text is always written in the user’s XY plane at the
current Z coordinate. To draw 3 dimensional text, the XY plane must then be transformed
within the 3D space. If perspective projection is selected, this will be applied to the text
as well, unless hardware text is used (see page 7-6).

Figure 7.2 Perspective view of 3 dimensional text.

In addition to the general modelling transformation routines, GPGS-F provides two
transformation routines that are used for text only.

7.4.1 Shearing
Shearing is applied to a character string by

where the shearing angle is the arc tangent of Shear. Note that a positive value means
that the ‘up-vector’ of the string is sheared clockwise, while with rotation a positive angle
means counterclockwise rotation.

Figure 7.3 Character shearing.

The default value of Shear is 0.0, i.e. no shearing.

CALL CSHEA (Shear)

8th Edition PAGE 7-6

Character Strings Last changed: May 10, 1995

GPGS-F User’s Guide

7.4.2 Rotation
By default, graphic text is drawn parallel to the X axis. This may be rotated by

where Angle specifies the rotation angle in radians, or

where Dangle specifies the rotation angle in degrees. Note that the rotation angle is
absolute, not relative to the previous value. There is no need to supply the rotation axis,
as this is a 2D rotation, i.e. the rotation axis is always the Z axis.

When text rotation is set, each string will be rotated around its reference position, i.e. the
current position.

Figure 7.4 Character rotation.

7.5 Software / Hardware Text Generation
It is possible to select whether to use GPGS-F software or device hardware to produce
graphic text by

where Isw=1 will select software (default), Isw=0 will select hardware.

When software text is selected, each character is made up by a number of straight lines,
allowing any size and transformation to be applied to the text.

With most devices, hardware text will be faster to draw, but there will often be a limited
number of sizes and rotation angles available.

The driver descriptions in Appendix E lists the capabilities of the individual drivers.

CALL CROTA (Angle)

CALL CROTAD (Dangle)

C
R

O
T

A
D

(9
0.

0)
 C

ROTAD(4
5.

0)
 CROTAD(0.0) CROTAD(−45.0) C

R
O

T
A

D
(−

90.0)

CALL SOFCHA (Isw)

8th Edition PAGE 7-7

Character Strings Last changed: May 10, 1995

GPGS-F User’s Guide

7.6 Text Alignment
By default, a text string is positioned with its lower left hand corner at the current position.
GPGS-F is however able to produce centred and right aligned text by specifying a
horizontal and vertical alignment factor.

These alignment factors are set by

Horiz specifies the position of the current position along the baseline of the string, where
0.0 is the start and 1.0 is the end of the string. The value is however not limited to be
within the range 0.0 to 1.0, any value may be used.

Vert specifies the position of the current position along a line from the baseline (0.0) to
the character space height (1.0). Thus, the exact position of the string will also depend on
the character box height set by CSIZEL (see page 7-4). As with Horiz, any value may be
given for Vert.

The default values for both Horiz and Vert are 0.0

Figure 7.5 Text alignment.

The vertical alignment shown is based on the default value of the character box height.

If either Horiz or Vert is set to a value unequal to 0.0, the current position is not updated
to the end of the string after it is drawn.

Arguments to CJUST

Horiz Vert

0.0 0.0

0.5 0.0

1.0 0.0

0.0 0.25

0.5 0.25

1.0 0.25

0.0 0.5

0.5 0.5

1.0 0.5

CALL CJUST (Horiz, Vert)

String

String

String

String

String

String

String

String

String

8th Edition PAGE 7-8

Character Strings Last changed: May 10, 1995

GPGS-F User’s Guide

When aligning a string containing several lines of text, the horizontal alignment is applied
to each substring, while the vertical alignment factor is used to position the first substring.

Example 7.3 Two methods of aligning multiple text strings.
C
C First draw 3 right aligned strings using a single call.
 CALL CJUST (1.0,0.0)
 CALL LINE (5.0,8.0,0)
 CALL CHARC ('3 lines of text*Nusing a*Nsingle call')
C
C Use 3 individual calls, adding 1.0 to the vertical alignment
C for each new line of text, thus moving it down 1 line.
 CALL CJUST (1.0,0.0)
 CALL LINE (5.0,3.0,0)
 CALL CHARC ('3 lines of text')
 CALL CJUST (1.0,1.0)
 CALL CHARC ('using three')
 CALL CJUST (1.0,2.0)
 CALL CHARC ('individual calls')

Figure 7.6 Aligning strings (using the code from Example 7.3).

7.7 Text Fonts
With software text, one of eight different text fonts may be used. Five of these contain
roman characters in different styles, two contain greek characters and one contains
mathematical symbols. In addition, cyrillic characters are included with one of the greek
fonts.

The font to use is selected by

where Ifont is the font number as given by Table 7.2. If a font number outside the range
0 to 7 is given, font 0 will be used.

When hardware text is selected, the font number is just passed to the device driver in use,
and the result will depend on the driver capabilities. Some drivers just supply a single font,
others may have several (with the PostScript driver, a total of 19 fonts are available).

3 lines of text

using a

single call

3 lines of text

using three

individual calls

CALL CFONT (Ifont)

8th Edition PAGE 7-9

Character Strings Last changed: May 10, 1995

GPGS-F User’s Guide

Table 7.2 Software text fonts.

Figure 7.7 GPGS-F font examples.

The characters of software text font number 0 is coded within the GPGS-F Fortran code.
When one of the fonts 1 to 7 is selected, the character definitions are read from a data file
that are delivered with the GPGS-F system.

When the fontfile is opened by GPGS-F, the Fortran unit number set by the installation
dependent parameter MFUNIT (see Appendix A) is used by default.

If this number is used by the application for other purposes, it is possible to tell GPGS-F
to use a different unit number by

where Ifontu is the new Fortran unit number to use. Ierru is described on page 24-4.

If -1 is given for Ifontu and/or Ierru, the default value is reset, while 0 means no change.

Font number Font name

0 GPGS-F default font

1 Simplex Roman

2 Complex Roman

3 Complex Italic

4 Duplex Roman

5 Simplex Greek

6 Complex Greek and Cyrillic

7 Mathematical Symbols

Font 0 :

Font 1 :

Font 2 :

Font 3 :

Font 4 :

Font 5 :

Font 6 :

Font 7 :

012 ABC abc
012 ABC abc

012 ABC abc
012 ABC abc
012 ABC abc
012 ABC abc
012 ABC abc
012 ABC abc

CALL SETFNU (Ifontu, Ierru)

8th Edition PAGE 7-10

Character Strings Last changed: May 10, 1995

GPGS-F User’s Guide

7.8 Character Encoding
GPGS-F interprets character codes as 8-bits international ASCII values according to the
definitions in the ISO 8859 standard, when using software fonts 0 to 4. The encoding of
fonts 5 to 7 are GPGS-F specific. Appendix B shows all characters available with each
software font. Note that some rarely used characters are not defined in all fonts.

When hardware text is selected, all character codes are just transferred to the device driver
in use, and interpreted by this. Some drivers are able to print any 8-bits characters, others
will just mask out the most significant bit.

Whether 8-bits characters may be included in strings passed to CHARC depends on both
the editor and the Fortran compiler in use. If the editor and/or the compiler does not allow
8-bits characters, such characters may be composed by either using the Fortran Intrinsic
function CHAR, or the format control sequence ‘*Sx’, where ‘x’ is the character whose
ASCII value is 128 less than the character to print (other format control sequences are
described on page 7-2).

Thus, the word større may be printed by using one of the following calls:
a) CALL CHARC ('større')

if the editor and compiler accepts 8-bit characters
(and the keyboard is able to produce the ø letter)

b) CALL CHARC('st'//CHAR(248)//'rre')
the ASCII value of ø is 248

c) CALL CHARC('st*Sxrre')
248-128=120, i.e. x

7.8.1 National Character Sets
As an alternative to using 8-bits character codes to produce international characters, it is
possible to select that a language specific encoding is to be applied to 7-bits characters
codes. This encoding is selected by

where the number Ilang specifies the encoding to use. The available language specific
encodings are given by Table 7.3. The default value of Ilang is 0, which is mapped to
one of the other values according to a rule specified when GPGS-F is installed.

Which 7-bit character codes are affected by selecting language specific encoding is shown
in Table 7.4.

CALL CLANG (Ilang)

8th Edition PAGE 7-11

Character Strings Last changed: May 10, 1995

GPGS-F User’s Guide

Table 7.3 National character sets.

Table 7.4 Language dependent encoding of 7-bit ASCII values.

Language number Language name

0 Installation dependent

1 ISO 8859

2 Norwegian

3 Swedish

4 German

5 French

6 British

7 Italian

8 Spanish

9 Portuguese

10 Norwegian (version 2)

11 Swedish for names

ASCII Values

35 36 64 91 92 93 94 96 123 124 125 126

ISO 8859 :

Norwegian :

Swedish :

German :

French :

British :

Italian :

Spanish :

Portuguese :

Norwegian V.2 :

Swedish (names) :

8th Edition PAGE 7-12

Character Strings Last changed: May 10, 1995

GPGS-F User’s Guide

7.9 Proportional Spacing
When using software fonts 1 to 7, the text is drawn using proportional spacing. That is,
the space occupied by each single character depends on the width of the character as
defined by the font designer.

If text is to be aligned on a character basis, proportional spacing may be switched off by

with Isw set to 0. Proportional spacing is reselected by setting ISW to 1.

Note that it is not necessary to switch proportional spacing off to get numbers aligned, as
all numbers are defined with equal width within each font.

Figure 7.8 Proportional spacing.

CALL CFPROP (Isw)

8th Edition PAGE 7-13

Character Strings Last changed: May 10, 1995

GPGS-F User’s Guide

7.10 Inquiring Text Extent
In some cases, such as when accurate positioning of text is necessary, it may be useful to
know the length of a text string.

For this purpose, routines finding the length of a character string in user coordinates are
provided.

For a string drawn by CHARC (see page 7-1)

will return the length of the longest line through Strlen, and the number of lines in the
string through Nlines. As with CHARC, Chstri may be a character variable, a character
array element or a character constant.

For compatibility with previous versions of GPGS-F, two additional routines are
available.

will return the length of the string Iarr given in Hollerith compatible format as with
CHARS, and

will return the length of the string Iarr given in A1 format as with CHARA.

In addition to finding the length of a string, the coordinates of a box enclosing the string
may be inquired by

(Tx, Ty) is the reference position used when drawing the string (starting point if no text
alignment is specified), Strlen and Nlines are the values returned from the DATCXC
routine.

The returned position (Cx, Cy) marks the end of the string. This may be used as the
starting point if a second string if strings are to be concatenated.

The arrays Bxarr and Byarr return the coordinates of the rectangle enclosing the text
string. The coordinates are given in sequence lower left, lower right, upper right, upper
left, i.e. the length of the arrays must be 4.

Finding the surrounding box of a text string may, for example, be used to draw a frame
around the text, as shown in Example 7.4.

CALL DATCXC (Chstri, Strlen, Nlines)

CALL DATCXS (Iarr(1), Strlen, Nlines)

CALL DATCXA (Iarr(1), Ilth, Strlen, Nlines)

CALL DATCBX (Tx, Ty, Strlen, Nlines, Cx, Cy,
Bxarr(1), Byarr(1))

8th Edition PAGE 7-14

Character Strings Last changed: May 10, 1995

GPGS-F User’s Guide

Note that DATCXC and DATCBX are not guaranteed to return correct values if hardware
text is selected. If the device driver is not able to find the requested information, the
returned values will be the same as if software font 0 was used.

Example 7.4 Framing a text string.
C
C Assuming that the window and viewport has been defined so that
C user units are centimetres.
C
 REAL BXARR(4), BYARR(4)
 CHARACTER CHSTRI*30
 ...
 CHSTRI='First,*Nsecond line*Nand third'
 ...
C
C Set the character size to 4 by 8 mm.
C Specify that the text is to centred.
C
 CALL CSIZES (0.4, 0.8)
 CALL CJUST (0.5, 0.0)
 CALL LINE (5.0, 8.0, 0)
 CALL CHARC (CHSTRI)
 CALL DATCXC (CHSTRI, STRLEN, NLINES)
 CALL DATCBX (5.0, 8.0, STRLEN, NLINES, CX, CY, BXARR, BYARR)
C
C Draw a frame with offset 2 mm from text.
C
 DXY = 0.2
 CALL LINE (BXARR(1)-DXY, BYARR(1)-DXY, 0)
 CALL LINE (BXARR(2)+DXY, BYARR(1)-DXY, 1)
 CALL LINE (BXARR(2)+DXY, BYARR(3)+DXY, 1)
 CALL LINE (BXARR(1)-DXY, BYARR(3)+DXY, 1)
 CALL LINE (BXARR(1)-DXY, BYARR(1)-DXY, 1)

Figure 7.9 Framing a text string (using the code from Example 7.4).

The reason why the space below the text in the figure is larger than 2 mm, is that character
descenders are taken into account when the surrounding box is computed.

8th Edition PAGE 8-1

Interaction Facilities Last changed: Apr 7, 1995

GPGS-F User’s Guide

Chapter 8
Interaction Facilities

To be truly general purpose, a graphic subroutine package like GPGS-F must not only
provide routines for generating graphic output. To allow interactive applications, there
must also be methods for reading data from the various input (interaction) tools of a
graphic device.

With GPGS-F, the different interaction tools are divided into classes according to the
information they return. The different classes are:

Text: returns a character string.
Pick: returns the segment number and an element namestack of a graphic

element pointed at.
Valuator: returns a real number between a defined lower and upper limit.
Locator: returns a position in Normalized Device Coordinates (NDC).
Button: returns a button number and button status.

Addressing input tools in a device independent way is not as straightforward as addressing
the display surface. With GPGS-F, the method selected is to identify the tools by assigning
an integer identification to each distinct tool of the graphic device. This number is called
a tool number.

Table 8.1 Interaction tool numbers.

If there is more than one tool available of a given class, these will be numbered x01, x02
etc. (Example: if a graphic terminal has both a graphic cursor and a tablet that may be used
for locator input, the cursor is assigned number 201, the tablet 202).

Note that the same physical tool may be used as different logical tools, e.g. a graphic
cursor controlled by a mouse may be used both as pick and locator tools.

The driver descriptions in Appendix E show what interactive tools are available with
each driver.

Tool number(s) Type of tool(s)

2 Text

3 Pick (hit)

101 - 199 Valuators

201 - 299 Locators

400 - 499 Buttons or function keys

900 - 999 Device dependent ESCAPE functions

8th Edition PAGE 8-2

Interaction Facilities Last changed: Apr 7, 1995

GPGS-F User’s Guide

8.1 Basic Interactive Programming
This section describes the routines giving access to the basic interactive facilities of
GPGS-F. Other routines and more detailed information is given in the following sections.

For each input class there is a routine that halts program execution, waits for the user to
generate an interrupt by activating a trigger, and returns the input data. This sort of
interaction is called Request mode input.

The most commonly used interaction method is to read the position of some locator tool
(often a graphic cursor). With GPGS-F this is done by

Itool is a locator tool, between 201 and 299. Xndc and Yndc is the returned position of
the cursor in Normalized Device Coordinates (see page 2-2). Utility routines are available
to convert these coordinates to window or user coordinates. These routines are described
on page 8-14.

The trigger used with locator tools is often a mouse button or a keyboard key. With some
devices, the trigger used may be identified by using the REATOL routine described on
page 8-12.

Example 8.1 Basic interaction using the locator.
C *****
C COMPLETE WORKING AXAMPLE
C *****
C
C Read device number, initialize device.
C
 READ *, IDEV
 CALL GPGS
 CALL NITDEV(IDEV)
 CALL BGNPIC(1)
C
C Read a position to use as starting point.
C
 CALL REQLOC(201, XNDC, YNDC)
 CALL LINE(XNDC, YNDC, 0)
C
C Then draw a line to each new point, until giving a position
C close to the left edge of the display.
C
 1000 CONTINUE
 CALL REQLOC(201, XNDC, YNDC)
 IF (XNDC .GT. 0.05) THEN
 CALL LINE(XNDC, YNDC, 1)
 GO TO 1000
 ENDIF
 CALL ENDPIC
 CALL RLSDEV(IDEV)
 END

CALL REQLOC (Itool, Xndc, Yndc)

8th Edition PAGE 8-3

Interaction Facilities Last changed: Apr 7, 1995

GPGS-F User’s Guide

A text string is fetched using

Itool is the text input tool (always 2), Chstri is a Fortran-77 character string where data
is to be returned, Length is the number of characters returned, not including trailing
spaces. REQTXC will wait for the operator to enter a text string terminated by Carriage
Return.

If retained segments (see Chapter 14 and Chapter 16) are used, graphic elements may
be made detectable (pickable) by using the routines described in Chapter 20. Once an
element is detectable, it may be pointed at and be identified by

Itool is the pick input tool (always 3), Maxnam specifies the maximum number of
identifiers to be returned through Namarr. On return, Lennam gives the actual number
of identifiers returned, less or equal to Maxnam. The identifiers returned through
Namarr is the picture segment number, followed by the namestack of the graphic
element. If no detectable element was pointed to, Lennam is returned zero.

Pick input, and the picture element namestack, is described in detail in Chapter 20.

Note that the position of the pick tool is not returned. For some devices this is however
available, and may be fetched using the REATOL routine (page 8-12).

A valuator tool is activated by

Itool is the valuator tool number, between 101 and 199. Value is the value returned,
normally between 0.0 and 1.0 (this tool is not often available).

A change in button status may be requested by

Itool is the button number, between 400 and 499. 400 means wait for any button to be
triggered. Ibutno returns the tool number of the button actually activated. Istat is the
button action (new status), 0=Button released (up), 1=Button pressed (down), -1=Button
activated, GPGS-F cannot decide whether it was pressed or released.

A button may be a mouse button or some sort of function key. In both cases, some devices
may generate interrupts both when a button is pressed and released, other devices generate
interrupts only when a button is pressed.

The driver descriptions in Appendix E show what button tools are available with the
different devices, and how interrupts are generated.

CALL REQTXC (Itool, Chstri, Length)

CALL REQHIT (Itool, Maxnam, Namarr(1), Lennam)

CALL REQVAL (Itool, Value)

CALL REQBUT (Itool, Ibutno, Istat)

8th Edition PAGE 8-4

Interaction Facilities Last changed: Apr 7, 1995

GPGS-F User’s Guide

8.2 Interaction Modes
Each of the input tools can operate in three modes. These modes are Request, Sample
and Event. Input from a tool is obtained in different ways depending on the mode:

Request: GPGS-F will wait until the input is entered by the operator, similar to
Fortran or C read operation. This is the default mode for all tools. Request
mode input was described in section 8.1.

Sample: Sampling a tool causes GPGS-F to return the current logical input value
from the specified tool, without waiting for any operator action. If
sampling the state of the tool is not possible, GPGS-F will return the value
set by tool initialization or generated by the last request or event mode
action. Sample mode input is described in section 8.2.1

Event: The device driver maintains an input queue containing ordered event
reports. An event report contains the identification of the tool and the
associated input value(s). More than one tool may be set in event mode,
and events are entered asynchronously with the user program. The oldest
event in the queue may be made the current event and fetched by the user
program. A tool is set in event mode by explicitly enabling/disabling it for
event input. Event mode input is described in section 8.2.2

8.2.1 Sample Mode Input
Note that only a very few devices support sample mode input. Most devices just return the
value set by the last request mode input or tool initialization.

For each input class there is a routine available to sample the current state of a tool. These
routines are very similar to the corresponding routines for request input. For each request
input routine ‘REQ...’ there is a sample input routine ‘SMP...’ with identical argument list,
and returning the same kind of data.

The available routines for sample mode input are just listed without describing the
arguments, as these will be identical to the arguments of the corresponding ‘REQ...’
routine described in section 8.1

Tool number 2, Text:

Tool number 3, Pick

Tool numbers 101 to 109, Valuator

CALL SMPTXC (Itool, Chstri, Length)

CALL SMPHIT (Itool, Maxnam, Namarr(1), Lennam)

CALL SMPVAL (Itool, Value)

8th Edition PAGE 8-5

Interaction Facilities Last changed: Apr 7, 1995

GPGS-F User’s Guide

Tool numbers 201 to 299, Locator

Tool numbers 400 to 499, Button

8.2.2 Event Mode Input
The event mode input routines are included in GPGS-F for future extensions to existing
device drivers and for coming new drivers. There is currently no device drivers supporting
these routines.

GPGS-F keeps a list of tools that may be used for event mode input. A tool is added to
this list (enabled for event mode input) by

where Itool is the input tool number. A tool that is enabled for event mode input, cannot
be used for request or sample mode input. If tool number 400 is specified, this means that
all buttons may be used in event mode.

If a tool no longer is to be used for event mode input, it must be removed from the list
(disabled) by

The tool may then be used for request or sample mode input again. If tool 400 is enabled,
it is not possible to disable a subset of the buttons and leave the rest enabled. This effect
may however be achieved by first disabling tool 400, and then enabling one or more
individual buttons.

As a tool is disabled, event reports from that tool will not be removed from the event
queue. If this is wanted, it must be explicitly executed by

saying that all events generated by Itool is to be removed from the event queue. Note that
flushing events is also possible for a tool that is currently enabled.

For button events, it is possible to flush events generated by a single button using tool
number 40x, or all buttons using tool number 400.

CALL SMPLOC (Itool, Xndc, Yndc)

CALL SMPBUT (Itool, Ibutno, Istat)

CALL ENABLE (Itool)

CALL DSABLE (Itool)

CALL FLUSHE (Itool)

8th Edition PAGE 8-6

Interaction Facilities Last changed: Apr 7, 1995

GPGS-F User’s Guide

At most, 20 tools may be enabled for event mode input at a time. The operator may
activate any of these tools and enter data into the event queue asynchronously of the user
program. Events from the queue are fetched by first finding what tool generated the oldest
event, and depending on this, getting the actual event report by calling a tool specific
routine.

will return the tool number that generated the oldest event through Itool. If the event
queue is empty, the program will wait maximum Time seconds for user action (i.e. for a
new event to be entered). If Time is specified negative, timeout will not occur, i.e. the
program will wait until a new event report is generated (similar to request mode input).

Itool returns the tool number of the oldest event in the queue. If Itool is zero on return,
the event queue was empty, and no new event was generated within the period specified
by Time.

Note that if tool 400 is enabled for event input, Itool will not return 400 for button events,
but the tool number of the actual button generating the event.

The actual event report is fetched by calling one of the following routines, depending on
the tool number returned by AWAIT.

A text report is fetched by

Chstri is a Fortran-77 character string returning the text string. Length is the number of
characters returned, not including trailing spaces. A text report is entered when the
operator types Carriage Return, or when the text input buffer is full (may be device
dependent).

A pick report is fetched by

As with REQHIT (see page 8-3), this function requires use of retained segments.
Maxnam specifies the maximum number of identifiers to be returned through Namarr,
Lennam gives the number actually returned. Namarr returns the segment number and
the element namestack as REQHIT. If no detectable element was pointed to, Lennam is
returned zero.

Once a pick report has been fetched, it is possible to get the position of the pick tool as
that report was generated by

The position is returned in Normalized Device Coordinates.

CALL AWAIT (Time, Itool)

CALL GETTXC (Chstri, Length)

CALL GETHIT (Maxnam, Namarr(1), Lennam)

CALL HITPOS (Xndc, Yndc)

8th Edition PAGE 8-7

Interaction Facilities Last changed: Apr 7, 1995

GPGS-F User’s Guide

A valuator report is fetched by

returning Value, a real value between a tool dependent lower and upper limit (normally
between 0.0 and 1.0).

A locator report is fetched by

where Xndc and Yndc is the position in normalized device coordinates of the point
given. The key or button pressed is not available with event mode input.

A button report is fetched by

where Istat is the button action (new button status), 0=Button released (up), 1=Button
pressed (down), -1=Button activated, GPGS-F cannot decide whether it was pressed or
released.

Example 8.2 Event mode input.
C
C Enable tools (text, locator, button 1) for event input.
C
 CALL ENABLE(2)
 CALL ENABLE(201)
 CALL ENABLE(401)
C
C Do computations, draw something
 ...
C
C Wait maximum 1 minute for tool to be activated.
C
 CALL AWAIT(60.0, ITOOL)
 IF (ITOOL .EQ. 0) THEN
 PRINT *, ' Please wake up, buddy'
 ELSEIF (ITOOL .EQ. 2) THEN
 CALL GETTXC(Chstri, LENGTH)
 CALL ACTION(Chstri(1:LENGTH))
 ELSEIF (ITOOL .EQ. 201) THEN
 CALL GETLOC(XNDC, YNDC)
 CALL DOIT (XNDC, YNDC)
C Help function if button pushed, (ignore button status)
 ELSEIF (ITOOL .EQ. 401) THEN
 CALL HELP(Program-context)
 ELSE
 PRINT *,' Illegal tool (system error ?????)'
 ENDIF
 ...

CALL GETVAL (Value)

CALL GETLOC (Xndc, Yndc)

CALL GETBUT (Istat)

8th Edition PAGE 8-8

Interaction Facilities Last changed: Apr 7, 1995

GPGS-F User’s Guide

8.3 Echo Control
Echoing is used to give the operator indication of the current state of the input tool, and/
or some feedback to indicate when the tool is triggered.

In request mode, the echo is shown when calling the interaction routine and removed
when the input value has been entered. In event mode, echoing is shown when the tool is
enabled for events and continuously visible until the tool is disabled.

The echo may be turned on/off by

where Itool is the input tool number and Istat is 0 to turn echoing off and 1 to turn it on.
By default echoing is on. With most devices it is not possible to turn echoing off.

The echo area is defined to be the part of the display surface that may be used for
interaction by locator and pick tools. By default this is set to cover the complete display
surface, but may be changed by

where Varr is a viewport array (NDC) in sequence [Xlow, Xhigh, Ylow, Yhigh]. Itool is
the logical tool number. This facility is also available with very few devices.

8.3.1 Echo Specification
The appearance of the input tool echo may be specified by

where Itool is the logical tool number, Iarr is an integer array of length Lthi and Farr is
a real array of length Lthf. The contents of Iarr and Farr are interpreted by the device
drivers, depending on the tool selected.

Obviously, Iarr and Farr will contain quite different kind of data for the different tools.
Iarr(1) is however always used to select the echo type, and setting this to 4 will select the
default echo type defined by the device driver. This default echo type will also be used if
a echo type that is not available with a given driver is specified.

Some echo types are selected by using the value of Iarr(1) only, others require additional
data to be supplied through Iarr or Farr. If some of these required data are not supplied
by the application program, the device drivers will either use the values from a previous
call, or if there was no previous call, some device dependent default values.

With the following description of the various echo types for each input tool, the echo types
defined by GPGS-F are listed. Most drivers will provide only a subset of these echo types,
while others may provide device specific echo types in addition to those listed.

CALL ECHCTL (Itool, Istat)

CALL ECHVP (Itool, Varr(1))

CALL ECHTOL (Itool, Iarr(1), Lthi, Farr(1), Lthf)

8th Edition PAGE 8-9

Interaction Facilities Last changed: Apr 7, 1995

GPGS-F User’s Guide

Echo specification for tool number 2, text

Echo specification for tool number 3, pick

Echo specification for tool numbers 101 to 199, valuator

Iarr(1) = 4 ➝ Default. Echo the input text in a device dependent position.
Iarr(2) : Input buffer length.

Farr(1) : New text buffer start position in X direction (NDC).

Farr(2) : New text buffer start position in Y direction (NDC).

Farr() : For all echo types unless otherwise specified:
Farr(1) : New pick cursor X position (NDC).
Farr(2) : New pick cursor Y position (NDC).
If possible, the driver will move the pick cursor to this new position the
next time the pick tool is activated.

Iarr(1) = 4 ➝ Use default echo type defined by the device driver.

Iarr(1) = 5 ➝ Set pick aperture and cursor shape. Note that this does not change
the echo type.
Farr(1) : New pick aperture size in X direction (NDC).
Farr(2) : New pick aperture size in Y direction (NDC).

If Lthf = 1, the pick aperture becomes a square.
Iarr(2) = 1 ➝ Use hit rectangle with the size of the pick aperture.
Iarr(2) = 2 ➝ Use a tracking cross or cursor.

Iarr(1) = 6 ➝ Highlight the graphic element picked.

Iarr(1) = 7 ➝ Highlight the picture segment picked.

Farr() : For all echo types unless otherwise specified:
Farr(1) : New initial value.
Farr(2) : New lower limit (default value 0.0).
Farr(3) : New upper limit (default value 1.0).

Iarr(1) = 4 ➝ Use default echo type defined by the device driver.

Iarr(1) = 5 ➝ Use a dial or pointer as echo.

Iarr(1) = 6 ➝ Use a digital representation as echo.

Iarr(1) = 7 ➝ Translate a retained picture segment in X direction.
Iarr(2) : Picture segment number.

Iarr(1) = 8 ➝ Translate a retained picture segment in Y direction.
Iarr(2) : Picture segment number.

8th Edition PAGE 8-10

Interaction Facilities Last changed: Apr 7, 1995

GPGS-F User’s Guide

Echo specification for tool numbers 201 to 299, locator

Echo specification for tool numbers 400 to 499, button

Echo specification for tool numbers 900 to 999, ESCAPE functions

As shown by the descriptions above, the specifications set by ECHTOL in some cases
does not only describe the echo type and method, but also set some initial values for the
given input tool. Thus, ECHTOL is sometimes referred to as a tool initialization routine.

Farr() : For all echo types unless otherwise specified:
Farr(1) : New locator cursor X position (NDC).
Farr(2) : New locator cursor Y position (NDC).
If possible, the driver will move the pick cursor to this new position the
next time the pick tool is activated.

Iarr(1) = 4 ➝ Use default echo type defined by the device driver.

Iarr(1) = 5 ➝ Use a crosshair as echo.

Iarr(1) = 6 ➝ Use a graphic cursor as echo.
Farr(1) : Cursor size in X direction (NDC).
Farr(2) : Cursor size in Y direction (NDC).
If Lthf is 1, Farr(1) sets the size in both directions.

Iarr(1) = 7 ➝ Use a rubberband line as echo. One point is at the current locator
position, the other following the locator cursor.

Iarr(1) = 8 ➝ Use a rubberband rectangle as echo. One corner is at the current
locator position, the other following the locator cursor.

Iarr(1) = 10 ➝ Use a retained picture segment as echo (segment dragging). The
segment will be moved relative to the current cursor position, and
will remain where it is moved to after dragging. It may be reset to its
original position by the VIDEN routine (see page 18-1).
Iarr(2) : Picture segment number.

Iarr(1) = 4 ➝ Use default echo type defined by the device driver.

Iarr(1) = 5 ➝ Blink a retained picture segment when button is activated.
Iarr(2) : Picture segment number.

Tool numbers in the range 900 to 999 are used to access device dependent features of
a device driver. What features are available with the various drivers, and what kind of
data must be supplied, are described in Appendix E.
Two tool numbers are used by several drivers, and these are therefore standardized.

Tool 912 : Farr(1) : Pen speed in cm/s.
Farr(2) : Acceleration in g’s.

Tool 920 : Send characters directly to the device.
Iarr() : One ASCII value in lower byte of each element.

8th Edition PAGE 8-11

Interaction Facilities Last changed: Apr 7, 1995

GPGS-F User’s Guide

8.4 Methods for Text Output
Interaction with the text tool (keyboard) is assigned tool number 2. Beside fetching a text
string, this tool may also be used to output text, e.g. for prompting messages to the user
(this applies to terminal devices only).

A text string is output by

where Itool is the text tool number (=2), and Chstri is a Fortran-77 character string
containing the text to be printed. The text string is printed in the current text position. This
may be specified by ECHTOL as described on page 8-9.

If setting the text position is possible for a given device, text written by Fortran (or other
language) will also be placed at the position set by GPGS-F. Thus, the ECHTXC routine
is just an alternative to using language supplied output routines independent of GPGS-F.

With most (if not very old) graphic terminals, the graphic and alphanumeric screens are
logically two different screens, even though they may use the same physical display. For
this kind of devices, the text position can not be set by ECHTOL, as GPGS-F only
addresses the graphic screen.

If the application program performs direct I/O outside GPGS-F, this must be synchronized
with GPGS-F as described on page 1-5.

Following from the above, a GPGS-F application program may generate text output in 3
different ways, GPGS-F graphic text routines (described in Chapter 7), the ECHTXC
routine, and I/O operations independent of GPGS-F.

Graphic text should always be used if the text is to be a part of the GPGS-F drawing. It
may however also be used for other purposes, such as writing error or help messages on
the screen, as the text then will appear at the same position and with the same attributes,
independent of what device is used.

8.5 Interaction With a Second Device
By default, the current device is used for both input and output by GPGS-F. It may
however in some cases be convenient to get input from a different device than the one that
is used for output. A typical example of this is if a digitizer is implemented as a separate
device.

To accomplish this, it is possible to specify an alternate device to use for input only by

where Idev is the number of the device to which all subsequent input and echo control
commands are to be directed. To reselect the default condition, i.e. reading input from the
current output device, a value of -1 may be supplied through Idev.

CALL ECHTXC (Itool, Chstri)

CALL INPDEV (Idev)

8th Edition PAGE 8-12

Interaction Facilities Last changed: Apr 7, 1995

GPGS-F User’s Guide

Example 8.3 Using a separate input device.
 CALL GPGS
C
C Initialize a digitizer device and a graphic terminal.
C
 CALL NITDEV(Digitizer)
 CALL NITDEV(Screen)
C
C By default, input is fetched from the ‘Screen’ device.
C
 CALL REQLOC(201, X1, Y1)
C
C Select the ‘Digitizer’ as input device, and read some points.
C For each point, draw a marker on the ‘Screen’ device.
C Call UPDAT to empty the command buffer as each marker
C is generated.
C
 CALL INPDEV(Digitizer)
 DO 1000 I=1,inumb
 CALL REQLOC(201, X2, Y2)
 CALL LINE(X2,Y2,0)
 CALL MARKER(3)
 CALL UPDAT(0)
 1000 CONTINUE
C
C Switch back to input from current device (‘Screen’).
C
 CALL INPDEV(-1)

8.6 Reading Additional Input Data
As mentioned in section 8.1, some input tools may generate more data than is returned
through the request and sample mode input routines.

Such additional data may be fetched by

where Itool is the tool number, Iarr is an integer array and Farr is a real array to receive
data. Lthi and Lthf specifies the number of integer and real values to return.

The most commonly available data are given below. These data are however not available
with all drivers, while other drivers may provide data not listed here. Thus, the driver
descriptions in Appendix E should be consulted for information on a given device.

Additional data available for pick tool

Additional data available for locator tools

Farr(1) : X position (NDC) of the pick cursor.

Farr(2) : Y position (NDC) of the pick cursor.

Iarr(1) : Identification of the trigger used to activate the locator (request mode
only). The format of the identifier is device dependent (often A1).

CALL REATOL (Itool, Iarr(1), Lthi, Farr(1), Lthf)

8th Edition PAGE 8-13

Interaction Facilities Last changed: Apr 7, 1995

GPGS-F User’s Guide

8.7 Compatibility With Previous Versions
Two interaction routines are part of GPGS-F to ensure compatibility with previous
versions of the system.

Request mode input may be performed by

Ied is an array of input tools, the end of the array is marked with a ‘-1’ element. Iarr
is an array of integer values returned, Farr is an array of real values returned. Lthi
and Lthf specifies the number of integer and real values to return.

Time specifies the time in seconds to wait for an interrupt. If this is positive, GPGS-F
will return to the user program when the time has elapsed, whether an interrupt has
occurred or not. If Time is negative, GPGS-F will wait until an interrupt occurs.
Note that most device drivers do not support positive Time values.

Index is the position in the Ied array of the input tool causing interrupt. Index=0
means that no interrupt occurred during the specified time.

The data returned through Iarr and Farr for the different input tools are listed below.

Tool number 2, text: Iarr returns one character per word in Fortran A1 format.

Tool number 3, pick: Iarr returns the picture segment number and element
namestack (see REQHIT, page 8-3). Farr(1) and Farr(2) returns the position of the
pick cursor.

Tool numbers 101 to 199, valuator: Farr(1) returns the value.

Tool numbers 201 to 299, locator: Iarr(1) returns the ASCII value of the key or
button pressed, in A1 format. Farr(1) and Farr(2) returns the cursor position (NDC).

Tool numbers 400 to 499, button: Iarr(1) returns the new button status. If tool 400
is specified, Iarr(2) returns the button actually activated.

Echo specification and/or tool initialization may be done by

All arguments are identical to those of the ECHTOL routine described on page 8-8.

Index = INWAIT (Time, Ied(1), Iarr(1), Lthi, Farr(1), Lthf)

CALL WRITOL (Iarr(1), Lthi, Farr(1), Lthf)

8th Edition PAGE 8-14

Interaction Facilities Last changed: Apr 7, 1995

GPGS-F User’s Guide

8.8 Coordinate Conversion Routines
Some utility routines are available to help the user convert coordinate values from one
coordinate system to another.

This is mostly used with the interaction routines, as all coordinates returned are NDC,
while the user in most cases is interested in knowing the user or window coordinate
values.

Coordinates are converted from NDC to window coordinates by

Xndc, Yndc, Zndc is a position in NDC coordinates. This position is transformed by the
inverse window/viewport transformation and the position Xwin, Ywin, Zwin in window
coordinates is returned.

The inverse transformation, from window coordinates to NDC is performed by

Xwin, Ywin, Zwin is the given position in window coordinates, Xndc, Yndc, Zndc is
the returned position in NDC.

Converting from user coordinates to window coordinates is done by

Xusr, Yusr, Zusr is the position in user coordinates, Xwin, Ywin, Zwin is the returned
transformed position.

The last transformation, from window to user coordinates, is done by

Xwin, Ywin, Zwin is the position in window coordinates, Xusr, Yusr, Zusr is the
returned user coordinate position.

To perform this transformation, the system transformation matrix must be inverted. If no
transformation routines are called between successive call to WINUSR, there is no need
to perform this inversion each time. The Invert argument marks whether the matrix must
be inverted. Invert=1 means invert, 0 means do not invert (the inverted matrix computed
by the previous call is used).

CALL NDCWIN (Xndc, Yndc, Zndc, Xwin, Ywin, Zwin)

CALL WINNDC (Xwin, Ywin, Zwin, Zndc, Yndc, Zndc)

CALL USRWIN (Xusr, Yusr, Zusr, Xwin, Ywin, Zwin)

CALL WINUSR (Invert, Xwin, Ywin, Zwin,
Xusr, Yusr, Zusr)

8th Edition PAGE 8-15

Interaction Facilities Last changed: Apr 7, 1995

GPGS-F User’s Guide

As the interaction routines return a position in 2D only, the user must find the Z value to
supply to the conversion routines by some other means if 3D transformations are used for
output. The NDCWIN conversion will return correct values for X and Y no matter what
Z value is given, but with WINUSR, the X and Y values will depend on the specified Z
value.

Example 8.4 Converting locator input coordinates.
C *****
C COMPLETE WORKING AXAMPLE
C *****
C
 REAL WDW(4), VP(4)
C
C Read device number, window and viewport.
C
 READ *, IDEV, WDW, VP
 CALL GPGS
 CALL NITDEV(IDEV)
 CALL WINDW(WDW)
 CALL VPORT(VP)
C
C Specify (a 2D) transformation, open picture segment.
C
 CALL ROTAD(10.0, 3)
 CALL BGNPIC(1)
 IVIS=0
C
C Digitize 10 points.
C
 INVRT=1
 DO 2000 I=1,100
 CALL REQLOC(201, XNDC, YNDC)
C
C Convert the returned position to user coordinates,
C must first convert to window coordinates.
C
 CALL NDCWIN(XNDC, YNDC, 0.0, XWIN, YWIN, ZWIN)
 CALL WINUSR(INVRT, XWIN, YWIN,0.0, XUSR, YUSR, ZUSR)
C
C Mark that there is no need for inverting the
C transformation matrix more than once.
C
 INVRT=0
 CALL LINE(XUSR, YUSR, IVIS)
 IVIS = 1
 2000 CONTINUE
 CALL ENDPIC
 CALL RLSDEV(IDEV)
 END

8th Edition PAGE 8-16

Interaction Facilities Last changed: Apr 7, 1995

GPGS-F User’s Guide

8th Edition PAGE 9-1

Defining Line Patterns and Representation Last changed: Apr 7, 1995

GPGS-F User’s Guide

Chapter 9
Defining Line Patterns and

Representation

As described in Chapter 4, a linetype is specified with all GPGS-F routines used to draw
single lines, polylines and arcs. This linetype is sent to the device driver in use, and the
resulting line pattern depends on the capabilities of the driver. Thus, using different
linetypes may be used to distinguish between parts of a drawing, but the line pattern itself
is not controlled by the application.

With some applications it is essential that a given linetype appear identical on different
devices. Other applications may need linetypes that are defined by some (inter)national
standard. For these purposes, GPGS-F contains a family of routines that makes it possible
to define the pattern and representation of linetypes.

Line pattern and representation may be defined for linetypes 6 to 15.

When a pattern and/or representation is defined for a given linetype, lines using that
linetype are buffered in GPGS-F. This internal buffer is emptied either when a line with a
different linetype is drawn, a move is performed, or the picture segment is closed. The
buffering is needed to compute a nice transition between connected lines.

All lengths and widths specified are given in window coordinates. The window and
viewport should have the same X to Y ratio to avoid distortion of the patterns. If these
ratios are not equal the pattern length and line width will vary depending on the slope of
the line.

Quite often, the length of a pattern to be defined is to have a given physical length. To
achieve this, the DATDEV (see page 5-1) and NDCWIN (see page 8-14) routines may be
used to find the value in window coordinates corresponding to a given physical unit. An
example is shown below.

Example 9.1 Finding a window unit equalling 1 cm.
 REAL FARR(4)
C
C 1 cm given in meters (the unit returned by DATDEV).
 UNIT = 0.01
C
 CALL DATDEV(Idum, 0, FARR, 4)
 CALL NDCWIN(0.0, 0.0, 0.0, XZ, YZ, ZZ)
 CALL NDCWIN(UNIT/FARR(4), UNIT/FARR(4),0.0, XW, YW, ZZ)
C
 XUNIT = XW - XZ
 YUNIT = YW - YZ
C XUNIT and YUNIT now give the value in window coordinates
C that equals 1 cm on the display surface.

8th Edition PAGE 9-2

Defining Line Patterns and Representation Last changed: Apr 7, 1995

GPGS-F User’s Guide

9.1 Defining Line Patterns
A line pattern is defined by

Ivis is the GPGS-F linetype, within the range 6 to 15, to define. Itypar is an array giving
the visibility or angle of each line segment of the pattern, and Rlenar gives the length in
window coordinates of each line segment. Length is the number of line segments in the
pattern, that is the length of arrays Itypar and Rlenar.

There is no limitation to the number of segments in a single pattern, but the total number
of segments in all patterns defined is limited to 100.

The allowed values supplied through Itypar, and their meaning, are:
0: An invisible line segment, with length given by Rlenar(i).
1: A visible solid line segment, with length given by Rlenar(i).

-1 to -179: A visible solid line segment, drawn with an angle of -Itypar(i) degrees
between the line segment and the line as specified by its start and end
coordinates. The length of the line segment is given by Rlenar(i), and the
centre of the line segment is placed on the specified line at the end of the
previous line segment.

Some line patterns that may be defined by LPPATT are shown in the figure below.

Figure 9.1 User defined line patterns.

To delete the definition of a given linetype, call LPPATT with Length set to 1. If that
linetype is later used for drawing, the linetype is just passed to the driver in the same way
as if LPPATT is not used at all.

Length = 2
Itypar = [1, -90]
Rlenar = [1.0, 0.3]

Length = 2
Itypar = [1, 0]
Rlenar = [0.5, 0.5]

Length = 4
Itypar = [0, -60, 1, -120]
Rlenar = [0.5, 0.3,0.5, 0.3]

Length = 3
Itypar = [1, -45, -135]
Rlenar = [1.0, 0.5, 0.5]

The length of the line segments (Rlenar) are given in centimetres.

CALL LPPATT (Ivis, Itypar(1), Rlenar(1), Length)

8th Edition PAGE 9-3

Defining Line Patterns and Representation Last changed: Apr 7, 1995

GPGS-F User’s Guide

9.2 Defining Line Representation
Different representation of lines are selected by calling one of the routines described in
this section. By line representation is meant how the line is drawn, by a single stroke or
multiple strokes, and in the last case, the distance between strokes.

By default, lines are drawn by a single stroke line, in the same way as predefined
linetypes. If some other representation has been used, this condition may be reset by

where Ivis is the linetype.

Drawing lines by the use of a number of parallel lines is selected by

where Ivis is the linetype, Width is the total line width and Delta is the distance between
each line drawn. If Delta is selected to be less than the width of a single stroke line, the
line will appear thick and solid, even on line drawing devices like pen plotters.

Thick lines may also be selected by applying a linewidth scale factor to lines, by using the
LINWID routine described on page 13-1. This feature is however device dependent, and
is mainly provided by raster devices.

Figure 9.2 Lines drawn using a number of parallel lines.

As the angle between two lines to be drawn approaches 180 degrees, the outermost of the
parallel lines will extend far beyond the specified line. To avoid this, a ‘cut-off’ distance
is set. This is controlled by the LPSET routine described on page 9-5.

The width and delta values are given in centimetres,
the linetype of the right sequence is defined by LPPATT

Width = 0.16 Width = 0.3 Width = 0.16
Delta = 0.02 Delta = 0.075 Delta = 0.02

CALL LPGPGS (Ivis)

CALL LPPARA (Ivis, Width, Delta)

8th Edition PAGE 9-4

Defining Line Patterns and Representation Last changed: Apr 7, 1995

GPGS-F User’s Guide

As an alternative, parallel lines may be drawn with rounded corners and endpoints. This
is selected by

with the same argument definitions as with LPPARA. This kind of lines are often referred
to as hot dog lines.

The rounding of corners and endpoints are done by drawing circular arcs approximated
by line segments each covering a 30 degree arc. This value may be changed by using the
LPSET routine described on page 9-5.

Figure 9.3 Examples of hot dog lines.

A single line with a given offset from the specified line may be selected by

where Ivis is the linetype to define, and Offset specifies the distance from the specified
line. A positive Offset is defined to be to the ‘right’ of the line specified, when looked at
from the startpoint towards the endpoint.

Figure 9.4 Offset lines.

The width and delta values are given in centimetres

Width = 0.16 Width = 0.3
Delta = 0.02 Delta = 0.075

The dashed lines are drawn with no offset.

The solid lines are drawn by using the same
coordinates as the dashed lines, but the offset has
been set to 0.3 (in this case centimetres).

CALL LPHOTD (Ivis, Width, Delta)

CALL LPOFFS (Ivis, Offset)

8th Edition PAGE 9-5

Defining Line Patterns and Representation Last changed: Apr 7, 1995

GPGS-F User’s Guide

9.2.1 Line Representation Parameters
Two parameters used when drawing parallel, hot dog and offset lines is controlled by the
user. Their values are set by

Cid is a character string specifying which parameter to set, and Value is the new
parameter value.

Cid = 'ANgle' (2 first letters significant) specifies the approximation angle when drawing
circular arcs rounding hot dog lines at corners and endpoints. Value gives the angle in
degrees. Default value is 30.

Cid = 'EXtend' (2 first letters significant) specifies the maximum extension of parallel and
offset lines beyond their neighbour line (for offset lines the extension is measured from
the specified line). Value gives this extension as a multiple of the distance between the
line being drawn and its neighbour. Default value is 4.

Figure 9.5 Reducing the ‘cut-off’ distance of parallel lines.

Extension = 4.0 Extension = 2.0
(default)

CALL LPSET (Cid, Value)

8th Edition PAGE 9-6

Defining Line Patterns and Representation Last changed: Apr 7, 1995

GPGS-F User’s Guide

8th Edition PAGE 10-1

Polylines and Curves Last changed: Apr 7, 1995

GPGS-F User’s Guide

Chapter 10
Polylines and Curves

10.1 Polylines
To reduce the effort for both the user and the system, several lines may be passed to
GPGS-F at a time by the use of the TAB.. family of routines.

Different suffices are used to specify the type of coordinates:
I integer coordinates

L floating point coordinates
R coordinates relative to the previous point
3 3-dimensional polylines

The following polyline routines are available:

Xarr, Yarr, Zarr and Ixarr, Iyarr, Izarr are arrays of absolute coordinates. Dxarr, Dyarr,
Dzarr and Idxarr, Idyarr, Idzarr are arrays of relative coordinates. The number of
entries in the coordinate arrays is given by Lthi.

Ivis specifies the linetype to use when drawing the polyline (see page 4-1). If the value
of Ivis is negative every second line will be invisible, while the rest is drawn using
linetype -Ivis, starting with the first line.

CALL TABL (Xarr(1), Yarr(1), Lthi, Ivis)

CALL TABLR (Dxarr(1), Dyarr(1), Lthi, Ivis)

CALL TABL3 (Xarr(1), Yarr(1), Zarr(1), Lthi, Ivis)

CALL TABLR3 (Dxarr(1), Dyarr(1), Dzarr(1), Lthi, Ivis)

CALL TABI (Ixarr(1), Iyarr(1), Lthi, Ivis)

CALL TABIR (Idxarr(1), Idyarr(1), Lthi, Ivis)

CALL TABI3 (Ixarr(1), Iyarr(1), Izarr(1), Lthi, Ivis)

CALL TABIR3 (Idxarr(1), Idyarr(1), Idzarr(1), Lthi, Ivis)

8th Edition PAGE 10-2

Polylines and Curves Last changed: Apr 7, 1995

GPGS-F User’s Guide

Figure 10.1 Using negative linetype with polyline drawing.

The start position of a polyline is the current position, i.e. the first line is drawn from the
current position to the point given by the first array elements (as shown by the figure
above). If the polyline is to start at the point given by the first array elements, this is easily
achieved by:

CALL LINE(XARR(1),YARR(1),0)
CALL TABL(XARR(2),YARR(2),LTH-1,IVIS)

10.1.1 Automatic Value or Index Increment
If there is a fixed increment between values along one of the axes, building an array
containing these values is unnecessary. Instead, the increment may be supplied to the
TAB.. routine. Before doing this, the autoincrement indicators must be set by

or

If one or more of the Mx, My or Mz arguments are set to zero, this implies that a increment
value is supplied to the next TAB.. routine instead of an array for the given axis.

If the autoincrement indicators are set to a value unequal to zero, this marks the index
increment to use for the corresponding array, e.g. if Mx is set to 2, every second element
from the X array will be used.

The default values of the autoincrement indicators are 1, i.e. every element from the
coordinate arrays are used.

Note that the increment values set by AUTOX(3) applies to the next call to a TAB..
routine only. After the polyline is drawn, the indicators are reset to their default values.

REAL XARR(3), YARR(3)
DATA XARR/0.1, 0.2, 0.5/
DATA YARR/0.4, 0.1, 0.5/
.
.
CALL LINE (0.0, 0.0, 0)
CALL TABL (XARR, YARR, 3, -1)

0.1 0.2 0.3 0.4 0.5

0.1

0.2

0.3

0.4

0.5

(Xarr(1),Yarr(1)

(Xarr(2),Yarr(2)

(Xarr(3),Yarr(3)
Y

X

CALL AUTOX (Mx, My)

CALL AUTOX3 (Mx, My, Mz)

8th Edition PAGE 10-3

Polylines and Curves Last changed: Apr 7, 1995

GPGS-F User’s Guide

In addition to polylines, automatic value increment may be applied when drawing
parameterized curves (see page 10-4), while automatic index increment may be applied
when drawing polygons (see page 12-3).

Figure 10.2 Polyline with value increment.

Index increment is not as commonly used as value increment. There are however some
cases where this is useful, such as examining large arrays by drawing just some of the data
values, or if drawing a polyline based on an array containing both the X and Y values
stored in alternate entries.

Figure 10.3 Polyline with index increment.

X values are given by Xarr, Y values
have a fixed increment of 0.1
REAL XARR(5)
DATA XARR/0.2,0.1,0.5,0.3,0.4/
.
.
CALL AUTOX (1, 0)
CALL LINE (0.0, 0.0, 0)
CALL TABL (XARR, 0.1, 5, 1)

Both X and Y values are stored in
Arr. X values in elements 1, 3, 5 etc.
Y values in elements 2, 4, 6 etc.
REAL ARR(10)
DATA ARR/0.1,0.1, 0.1,0.2,
0.3,0.3, 0.4,0.2, 0.5,0.4/
.
.
CALL AUTOX (2, 2)
CALL LINE (0.0, 0.0, 0)
CALL TABL (ARR(1),ARR(2),5,1)

0.1 0.2 0.3 0.4 0.5

0.1

0.2

0.3

0.4

0.5

Xarr(1)

Xarr(2)

Xarr(3)

Xarr(4)

Xarr(5)

Y

X

0.1 0.2 0.3 0.4 0.5

0.1

0.2

0.3

0.4

0.5

Arr(1), Arr(2)

Arr(3), Arr(4)

Arr(5), Arr(6)

Arr(7), Arr(8)

Arr(9), Arr(10)

Y

X

8th Edition PAGE 10-4

Polylines and Curves Last changed: Apr 7, 1995

GPGS-F User’s Guide

10.2 Parameterized Curves
If the coordinates of a curve are generated by external functions, GPGS-F provides
routines that will draw the curve directly, without first storing the coordinates in arrays.
There are however some limitations to these routines. There must be individual functions
for generating the X, Y and Z value of each point, and these functions can not have more
than one input argument.

The following routines are available:

Fx, Fy, Fz are functions that will generate the X, Y, Z values, in absolute user coordinates,
of a curve. For each point, the functions will be called in the sequence Fx, Fy, Fz. Relative
values are generated by Dfx, Dfy, Dfz. As with the polyline routines, the 3-dimensional
routines have a trailing 3.

Plowl, Uppl, Step are the lower limit, upper limit and step size respectively of the
argument passed to the functions. This means that the same argument values are passed
to the functions. Ivis is the GPGS-F linetype to use for drawing.

Figure 10.4 Curve generated by intrinsic and external functions.

As with polylines, the first line segment is drawn from the current position.

The X values are generated by the
intrinsic SIN function, while the Y
values are generated by the application
function SINY
EXTERNAL SINY
INTRINSIC SIN
.
.
CALL LINE (0.0, SINY(0.0), 0)
CALL CURV (SIN,SINY,0.0,6.3,0.1,1)

FUNCTION SINY(VAL)
SINY=SIN(VAL-3.14/3.0)
RETURN
END

CALL CURV (Fx, Fy, Plowl, Uppl, Step, Ivis)

CALL CURVR (Dfx, Dfy, Plowl, Uppl, Step, Ivis)

CALL CURV3 (Fx, Fy, Fz, Plowl, Uppl, Step, Ivis)

CALL CURVR3 (Dfx, Dfy, Dfz, Plowl, Uppl, Step, Ivis)

Y

X1.0

1.0

8th Edition PAGE 10-5

Polylines and Curves Last changed: Apr 7, 1995

GPGS-F User’s Guide

10.2.1 Automatic Value Increment
Similar to the polyline routines, automatic value increment may be used with curves as
well. The AUTOX / AUTOX3 routines are used, with the arguments defined as when used
with polylines (see page 10-2).

Note however that this is not guaranteed to work with all computers. Internally, GPGS-F
will treat the input arguments to the CURV.. routines either as a function reference or a
real value, depending on the current settings of the autoincrement indicators. Some
systems may not allow this.

There is no function corresponding to index increment available with the curve routines.

Figure 10.5 Curve with value increment in Z direction.

The X and Y values are generated by the
SIN and COS functions, while the Z
values have a fixed increment of 0.02,
starting at 0.0
INTRINSIC SIN, COS
.
.
CALL AUTOX3 (1, 1, 0)
CALL LINE3 (0.0, 1.0, 0.0, 0)
CALL CURV3(SIN,COS,0.02,

0.0, 15.7, 0.314, 1)
1.0

1.0

1.0

X

Y

Z

8th Edition PAGE 10-6

Polylines and Curves Last changed: Apr 7, 1995

GPGS-F User’s Guide

8th Edition PAGE 11-1

Colour Specification Last changed: Apr 7, 1995

GPGS-F User’s Guide

Chapter 11
Colour Specification

As the reader will have noticed the colour of graphic primitives is not specified through
the subroutine calls generating the primitives.

The colour is instead specified by a separate routine, setting a current colour index, and
this colour index will be used until changed by a new call to the same routine.

A colour index is not a direct colour, but an index into a table giving the actual colour. The
reason why colour tables and colour indices are used instead of direct colours, is that this
makes it possible to utilize the hardware colour facilities of raster devices, which is the
most common device type used with GPGS-F.

The colour tables are kept in the device drivers, or if possible, in the graphic device. As a
device is initialized by NITDEV (see page 1-2), the 8 first entries in the colour table are
set to default values common to all devices. These default values are shown in Table 11.1
(page 11-6). There are three different kinds of colour tables, allowing various degrees of
manipulation. What kind of colour table is used by a given device depends on the
capabilities of that device.

The different kinds of colour tables used by GPGS-F drivers are:
Fixed: The contents of the colour table may not be changed. This kind of colour

table is used by pen plotters.
Static: Changing the definition of a colour index will affect subsequent primitives

using the given index, while primitives already drawn will not be affected.
This kind of colour table is used by most colour raster plotters.

Dynamic: Changing the colour table will change the colour of primitives already
drawn, as well as subsequent primitives. This kind of colour table is used
by colour raster terminals.

With devices using a fixed colour table, there is, as the name applies, a fixed relation
between the colour index and the actual colour. For a pen plotter, GPGS-F defines this
relation to be between the colour index and the physical pens of the plotter, i.e. colour
index n means pen number n. Thus, to get the requested colour, the operator must ensure
that the pens are mounted in the sequence given by the default colour table.

The length of the colour table is device dependant. Entries are numbered from zero
upwards, with zero being the background colour. For raster terminals, the length of the
colour table is the maximum number of colours that may be displayed on the screen at the
same time. Most common values are 8, 16 and 256. For pen plotters, the length of the
colour table equals the number of pens available. The length of the colour table of the
device in use may be obtained by the DATDEV routine described on page 23-4.

GPGS-F can not handle colour tables with more than 32768 entries.

8th Edition PAGE 11-2

Colour Specification Last changed: Apr 7, 1995

GPGS-F User’s Guide

11.1 Colour Index Selection
The current colour index is selected by

where Ind is the colour index to be used for drawing. Selecting a index higher than the
maximum available for the active device will result in a device dependant colour index
being used (normally 1).

As mentioned earlier, the colour index selected will remain active until changed by a new
call to COTIND. The colour index is however reset to its default value of 1 when a new
picture segment is opened by BGNPIC (see page 3-1).

The effect of using colour index 0 (the background colour) for drawing will depend on the
device in use. With pen plotters, and other line drawing devices, using colour index 0 will
have no visual effect. With raster devices, colour index 0 may be used to erase previously
drawn primitives. This feature is further described in Chapter 12.

For compatibility with previous versions of GPGS-F, a direct colour may be selected
by

where Icol is a direct colour code. The allowed values are:
0 Default foreground 40 Yellow

10 Magenta 50 Cyan
20 Blue 60 Red
30 Green 100 Default background

With plotters, the default background is white, default foreground black. With most
terminals, the default background is black, default foreground white.

11.2 Colour Models
The contents of the colour table may be changed at any time, giving the effect described
on page 11-1 for the different kinds of colour tables.

To change the colour table, GPGS-F allows the application programmer to choose among
three of the colour models most commonly used with computer graphics. These colour
models are RGB (Red, Green, Blue), HLS (Hue, Lightness, Saturation) and HSV (Hue,
Saturation, Value). Detailed descriptions are given in the following sections.

Which colour model to use will mainly depend on how familiar the application
programmer is with the different models.

Table 11.1 (page 11-6) shows how the default colour table is defined using each colour
model.

CALL COTIND (Ind)

CALL COLOUR (Icol)

8th Edition PAGE 11-3

Colour Specification Last changed: Apr 7, 1995

GPGS-F User’s Guide

11.2.1 RGB Colour Model
The most commonly used colour model, both with GPGS-F and other graphic systems, is
the RedGreenBlue model, mainly because it is easiest to use.

With the RGB colour model, a colour is specified as a mixture of red, green and blue
components by

Ind1 is the first colour index, and Lth the number of indices to change.

The Red, Green and Blue arrays specifies the amount of red, green and blue for each
colour index. The length of the arrays must then be at least equal to Lth. Each colour
component is given as a real number ranging from 0.0 (no contribution) to 1.0 (full
saturation).

The RGB colour model is often visualized as a unit cube, with the three components along
the axes, as shown below.

Figure 11.1 The RGB colour model.

CALL COTRGB (Ind1, Red(1), Green(1), Blue(1), Lth)

G

R

B

Cyan

Green

Red

Magenta

Blue

Yellow

White

Black

8th Edition PAGE 11-4

Colour Specification Last changed: Apr 7, 1995

GPGS-F User’s Guide

11.2.2 The HLS Colour Model
The second colour model that may be used with GPGS-F, is the HueLightnessSaturation
model. With this model, colours are specified by

As with COTRGB, Ind1 is the first colour index, and Lth the number of indices to
change.

The colours are defined by the Hue, Rlight and Sat arrays, as visualized by Figure 11.2.

Hue specifies the different pure colours, given as degrees from 0.0 to 360.0, Rlight
specifies the lightness (intensity), ranging from 0.0 (black) to 1.0 (white), and Sat
specifies the saturation, measured radially from the vertical axis, with 0.0 at the axis
(resulting in grey) and 1.0 for full saturation.

Pure colours are specified by setting Rlight to 0.5 and Sat to 1.0

Figure 11.2 The HLS colour model.

CALL COTHLS (Ind1, Hue(1), Rlight(1), Sat(1), Lth)

Red (0˚)

Yellow (60˚)

White

Cyan (180˚)

Green (120˚)

Blue (240˚) Magenta (300˚)

Black

L

S
H0.0

0.5

1.0

8th Edition PAGE 11-5

Colour Specification Last changed: Apr 7, 1995

GPGS-F User’s Guide

11.2.3 The HSV Colour Model
The third colour model that may be used with GPGS-F is the HueSaturationValue model.
With this model, colours are specified by

As with the other colour models, Ind1 is the first colour index, and Lth the number of
indices to change.

The colour model is visualized in Figure 11.3. Pure colours are selected by Hue, with
both Sat and Val set to 1.0. White pigment is added by decreasing Sat, while black
pigment is added by decreasing Val.

Figure 11.3 The HSV colour model.

CALL COTHSV (Ind1, Hue(1), Sat(1), Val(1), Lth)

Red (0˚)

Yellow (60˚)

WhiteCyan (180˚)

Green (120˚)

Blue (240˚) Magenta (300˚)

Black

V

S
H0.0

1.0

8th Edition PAGE 11-6

Colour Specification Last changed: Apr 7, 1995

GPGS-F User’s Guide

Table 11.1 Default GPGS-F colour table.

11.3 Monochrome Devices
Internally, GPGS-F always converts colour specifications to RGB before these are sent to
the device drivers. Monochrome devices will compute the resulting grey level based on
the RGB values by:

Grey = 30% Red + 59% Green + 11% Blue

resulting in a value between 0.0 (black) and 1.0 (white).

Grey levels may be specified directly by using the colour definition routines as follows:

RGB model: Use equal amounts of red, green and blue.
Red = Green = Blue = 0.0 gives black, 1.0 gives white.

HLS model: Set Sat to 0.0, and use Rlight to specify the grey level.
Rlight = 0.0 gives black, Rlight = 1.0 gives white.
The Hue value have no influence.

HSV model: Set Sat to 0.0, and use Val to specify the grey level.
Val = 0.0 gives black, Val = 1.0 gives white.
The Hue value have no influence.

Colour tables with different grey levels may of course also be defined for colour devices.
This is especially useful if plots are to be copied in monochrome mode, as it is quite
difficult to define colours that are well distinguishable when converted to grey levels.

1. With some devices (plotters and some displays), the default background is white and the
default foreground is black.

Index Colour R G B H L S H S V

0 Black1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

1 White 1.0 1.0 1.0 0.0 1.0 0.0 0.0 0.0 1.0

2 Red 1.0 0.0 0.0 0.0 0.5 1.0 0.0 1.0 1.0

3 Green 0.0 1.0 0.0 120.0 0.5 1.0 120.0 1.0 1.0

4 Blue 0.0 0.0 1.0 240.0 0.5 1.0 240.0 1.0 1.0

5 Cyan 0.0 1.0 1.0 180.0 0.5 1.0 180.0 1.0 1.0

6 Magenta 1.0 0.0 1.0 300.0 0.5 1.0 300.0 1.0 1.0

7 Yellow 1.0 1.0 0.0 60.0 0.5 1.0 60.0 1.0 1.0

8th Edition PAGE 12-1

Raster Graphics Last changed: Aug 9, 1995

GPGS-F User’s Guide

Chapter 12
Raster Graphics

Originally, GPGS-F was a system for line drawing only. As the use of raster devices
became more common, new routines was added to utilize the possibilities these devices
offer for graphics programming.

12.1 Raster Graphics Programming
A program written for a line drawing device need not be changed to run on a raster device.
However, raster devices offers features that need special programming techniques to be
utilized.

As described in Chapter 11, colour table manipulation is possible with raster devices
only. Raster devices allow area filling, using solid colours or patterns, and the visual effect
of drawing overlapping primitives is quite different between raster and line drawing
devices.

When a primitive is drawn on a raster device, this will obscure previously drawn
primitives. This means that the drawing sequence may be significant for the final result,
especially if filled areas are included. On line drawing devices, the colour of overlapping
primitives will be a mixture of the colours used, i.e. changing the drawing sequence will
have little or no visual effect.

The fact that a primitive obscures previously drawn primitives allows parts of a drawing
to be erased by just redrawing these parts using the background colour. This effect may
be used to introduce an element of dynamics into GPGS-F applications running on a raster
terminal. By using retained segments, it is possible to control the visibility of individual
picture segments, and also to physically move segments on the screen. The use of retained
segments is described in Chapter 14 and Chapter 16.

Even if retained segments are not used, some of the same effects may be achieved by the
application program directly, by using the background colour to erase parts of the picture,
or by manipulating the colour table if this is dynamic (see page 11-1).

8th Edition PAGE 12-2

Raster Graphics Last changed: Aug 9, 1995

GPGS-F User’s Guide

Example 12.1 Selective erase on a raster terminal.
C
C Draw two parts in 2 different colours.
C (DRAW is a user-supplied routine.)
C
 CALL COTIND(2)
 CALL DRAW(PART1)
 CALL COTIND(3)
 CALL DRAW(PART2)
C
C Erase part 2 by drawing with the background colour.
C
 CALL COTIND(0)
 CALL DRAW(PART2)

Example 12.2 Manipulating the colour table.
C
C Draw two parts in 2 different colours.
C
 CALL COTIND(2)
 CALL DRAW(PART1)
 CALL COTIND(3)
 CALL DRAW(PART2)
C
C ‘Erase’ PART2 by setting its colour equal to the
C background colour (assumed here to be black)
C
 CALL COTRGB(3, 0.0, 0.0, 0.0, 1)

12.2 Polygons
A polygon is defined as an area enclosed by a number of edges. GPGS-F allows both
convex (a polygon where no straight lines will cross more than two edges) and concave
polygons, and even polygons with holes.

Figure 12.1 Polygon shapes.

If the polygon is to be filled by hardware, either by default or as a result of user selection
(routine SOFPOL on page 12-6), some devices may have restrictions on polygon shape.

Convex Concave Concave, with hole

8th Edition PAGE 12-3

Raster Graphics Last changed: Aug 9, 1995

GPGS-F User’s Guide

12.2.1 Polygon Drawing
A 2 dimensional polygon is drawn by

where the vertices are given by Xarr and Yarr as absolute coordinates, or by

where the vertices are given by Dxarr, Dyarr as relative coordinates. The Lth argument
is described below, the Itype argument is described on the next page.

2 dimensional polygons are drawn in the XY plane at the current Z value.

A 3 dimensional polygon is drawn by

where the vertices are given by Xarr, Yarr and Zarr as absolute coordinates, or by

where the vertices are given by Dxarr, Dyarr and Dzarr as relative coordinates.

GPGS-F restricts 3 dimensional polygons to be plane. To meet this restriction, most
programmers will find it easier to define 2 dimensional polygons and transform these into
the 3D space, using the routines described in Chapter 6, than to define 3 dimensional
polygons. If a polygon is not plane, GPGS-F will still try to draw the polygon, but the
result depends on the type of the polygon, and whether it is filled by hardware or software.

The Lth argument to the polygon routines gives the number of vertices of the polygon.
Polygon closure is implicit, i.e. the edge from the last to the first vertex is added by
GPGS-F. As the polygon during computation is kept in internal GPGS-F arrays, there is
a limit on the number of vertices allowed. This limit is given by the system parameter
MPOLSZ (see page A-1), which may be changed by the site responsible for GPGS-F.

When relative coordinates are given, the first vertex is specified relative to the current
position, while the rest is specified relative to the previous vertex. When absolute
coordinates are given, the current position is not used. After the polygon is drawn, the
current position is set to the first vertex of the polygon in both cases.

Automatic index or value increment may used with polygons in the same way as with
polylines, using the AUTOX or AUTOX3 routines described on page 10-2.

CALL POLY (Xarr(1), Yarr(1), Lth, Itype)

CALL POLYR (Dxarr(1), Dyarr(1), Lth, Itype)

CALL POLY3 (Xarr(1), Yarr(1), Zarr(1), Lth, Itype)

CALL POLYR3 (Dxarr(1), Dyarr(1), Dzarr(1), Lth, Itype)

8th Edition PAGE 12-4

Raster Graphics Last changed: Aug 9, 1995

GPGS-F User’s Guide

12.2.2 Interior Style
The Itype argument given through the polygon drawing routines, specifies the interior
style of the polygon (also referred to as polygon type), i.e. how the polygon is rendered
(filled).

Table 12.1 Interior styles available with GPGS-F.

12.2.3 Perimeter Drawing
By default, when solid and textured polygons are generated, the perimeter (outline) is not
drawn. This may however be selected by

where Ind is the colour index to use for the perimeter. If this is set to -1, the default
condition is reset.

The visual effect of selecting perimeter drawing is the same as drawing the same polygon
twice, first using solid or textured fill, secondly as a hollow polygon.

Itype
value

Interior
style

Description

1 Solid

Uniform solid fill using the current colour index (see page
11-2). This kind of filling is always left to the device
hardware. If the device is not capable of performing solid
fill, only the perimeter (outline) of the polygon will be
drawn.

2 Hollow The perimeter is drawn by solid lines, using the current
colour index. No filling is applied.

3
to

8191
Textured

The interior is rendered by a pattern or with hatch lines.

In this case, Itype is an index into a pattern or hatch table,
describing the pattern or hatch style. The allowable range
of Itype depends on the texture quality selected by the
SOFPOL routine described on page 12-6.

How to select pattern or hatch rendering, how to define
the pattern and hatch tables, and all other aspects of
texture rendering is described in section 12.2.4.

CALL PRCIND (Ind)

8th Edition PAGE 12-5

Raster Graphics Last changed: Aug 9, 1995

GPGS-F User’s Guide

12.2.4 Texture Rendering
As described in Table 12.1, Itype values 3 to 8191 are used for both patterned and
hatched polygons. Which texture type to use is selected by

where Iptyp=1 selects hatch rendering and Iptyp=2 selects pattern rendering. If Iptyp is
set to 0, the default texture type used by the current device is selected. This default may
be requested by the DATDEV routine described on page 23-4.

Hatch and pattern texture is defined as follows:
Hatching: The polygon is filled by a number of parallel lines. The angle, and the

distance between the lines, is selected by separate routines.
The lines are drawn using the current colour index.

Patterning: The polygon is filled by repeating a pattern horizontally and vertically until
the polygon is completely filled.
A pattern is a two dimensional array of colour indices. This kind of
rendering is available only with devices that are capable of setting the
colour index of individual pixels.

12.2.4.1 Texture Quality
With GPGS-F, polygon texture rendering is designed to serve two purposes.

The most common purpose is just to get polygons with different appearance.

With raster devices this may be accomplished by using different colours for solid fill, or
using different patterns. The pattern itself, as well as its size and transformation need not
be important as the main goal is to get different looking areas.

With line drawing devices, different appearance is achieved by using hatch lines with
different angles, density and colours. The actual values need not be important, as long as
they are selected so that areas may be distinguished.

The other purpose for using texture rendering is to get an exact mapping of the pattern or
hatch style onto polygons. E.g. if a brick wall is to be drawn, a brick may be defined as a
pattern. The size and position of the brick must be defined relative to the wall, so that
when the wall is transformed, the bricks are transformed with the wall.

With hatch line rendering, exact mapping means that the hatch angle and the distance
between the hatch lines are transformed according to the transformation of the polygon
that is to be rendered.

CALL PITYP (Iptyp)

8th Edition PAGE 12-6

Raster Graphics Last changed: Aug 9, 1995

GPGS-F User’s Guide

Depending on the requirements, the quality of the texture may by selected by

where Iqual specifies the quality as described by the table below.

Table 12.2 Texture quality.

Parts of the pattern and hatch style definitions are stored in tables accessed by the Itype
argument through the polygon drawing routines. Additional attributes necessary to
complete the definitions are given as global attributes independent of the table entry
selected.

Note that when low or medium rendering quality is selected, only parts of the pattern or
hatch style definitions will be used. The selected quality also determines the allowable
range of the Itype argument given through the polygon drawing routines.

Details on these aspects are given in the following subsections, first describing the hatch
and pattern tables, then the global attributes available.

A summary of pattern and hatch style definition is given on page 12-9, and a program
example on page 12-10.

Iqual Quality Description

0 Low

The rendering is always left to the device driver or
hardware.

If the driver/hardware is not able to perform the selected
rendering, only the perimeter of the polygon is drawn.

1 Medium

The device driver/hardware is used if possible. If not, the
rendering is performed by GPGS-F software.

In the first case, medium quality will be identical to low
quality. In the second case, the texture is applied to the
transformed polygon. With hatching, this means that the
hatch angle and distance are not transformed. With
patterns, each pattern cell is mapped to a pixel on the
display surface, i.e. the pattern size (set by PISIZ, page
12-8) is ignored.

Medium quality is the default quality selected when
GPGS-F is initialized.

2 High
Rendering is always performed by GPGS-F software.

The texture is applied to the untransformed polygon, and
subsequently transformed with the polygon.

CALL SOFPOL (Iqual)

8th Edition PAGE 12-7

Raster Graphics Last changed: Aug 9, 1995

GPGS-F User’s Guide

12.2.4.2 Pattern and Hatch Style Tables
The pattern and hatch style tables are divided into 3 logical parts, divided by the table
index.

3 to 10: Stored both in GPGS-F and in the device drivers. The entries are
predefined as shown by tables 12.3 (patterns) and 12.4 (hatch styles), but
may be redefined by the user. These entries may be used with any texture
quality.

11 to 127: Stored in the device drivers only. These entries have no predefined content,
but may be defined by the user. They may be used with low and medium,
but not high quality texture.

128 to 8191: Also stored in the device drivers only. These entries are predefined, and
may not be redefined. They may be used with low quality texture only.

Although all table entries from 3 to 8191 are said to be stored in the device drivers, the
number of entries actually stored will depend on the device. The driver descriptions in
Appendix E will show how many user definable (entries 3 and up) and predefined (entries
128 and up) patterns / hatch styles are available. shows the predefined patterns defined by
the PostScript driver.

Table 12.3 Predefined patterns.

Entries 3 to 127 in the pattern table may be (re)defined by

where Index is the pattern table index. Icarr is an array of colour indices, with Nx pattern
cells in X direction and Ny pattern cells in Y direction.

If Index is in the range 3 to 10, the pattern is stored in GPGS-F, and sent to the driver
when needed. If Index is in the range 11 to 127, the definition is sent directly to the driver,
and if possible stored in the driver or in the device hardware.

The maximum number of cells in a pattern stored in GPGS-F is limited by the system
parameter MRPSIZ (see page A-1), which may be changed by the site responsible for
GPGS-F. For patterns in the range 11 to 127, GPGS-F will not limit the size, but just send
the definition to the driver. Whether the driver/hardware will be able to use the definition
will then be device dependant. Most devices will limit the number of cells in user defined
patterns, common values are 8×8, 16×16 or 32×32.

Index 3 4 5 6 7 8 9 10

Pattern
definition

Applied to
a polygon

0 1

1 0

1 0 0 0

0 1

1

1

0 0 0

0000

0

1 0 0 0

0 1

1

0

0 0 0

0010

00 1

0 1

1 2

3 4

0 0 1 0

0 0

1

0

1 1 1

0100

1

0 1 0 0

0 0

0

0

1 0 0

0000

0

0 0 0 0

0 1

1

0

1 1 0

0010

0

CALL PATDEF (Index, Icarr(1,1), Nx, Ny)

8th Edition PAGE 12-8

Raster Graphics Last changed: Aug 9, 1995

GPGS-F User’s Guide

Figure 12.2 Predefined hardware patterns, PostScript driver.

Table 12.4 Predefined hatch styles.

Entries 3 to 127 in the hatch style table may be (re) defined by

where Index is the table index, and Angle is the hatch angle in radians, measured
counterclockwise from the X axis.

As with patterns, if Index is in the range 3 to 10, the definition is stored in GPGS-F, and
sent to the driver when needed. If Index is in the range 11 to 127, the definition is sent
directly to the driver, and if possible stored in the driver or in the device hardware.

12.2.4.3 Global Texture Attributes
To complete the definition of patterns and hatch styles, some attributes are needed in
addition to the information stored in the pattern and hatch style tables. These attributes are
set by two routines that are common to hatched and patterned polygons.

The pattern size and/or hatch density is defined by

where Hdist is the distance between two individual hatch lines, Dx and Dy is the length
of a pattern in X and Y direction respectively. The values are specified in user coordinates,
with 0.01 as default value for all three arguments.

Index 3 4 5 6 7 8 9 10

Hatch
angle

135˚ 90˚ 45˚ 0˚ 157.5˚ 112.5˚ 67.5˚ 22.5˚

Applied to
a polygon

128 129 130 131 132 133

134 135 136 137 138 139

140 141 142 143 144 145

146 147 148 149 150 151

CALL HTCDEF (Index, Angle)

CALL PISIZ (Dx, Dy, Hdist)

8th Edition PAGE 12-9

Raster Graphics Last changed: Aug 9, 1995

GPGS-F User’s Guide

If only the pattern size or the hatch density is to be defined, the other arguments may be
set to 0.0, which is defined to mean ‘no change’.

The reference point of textured polygons is set by

where Xref and Yref specify this point in user coordinates. For patterned polygons, the
pattern is laid out so that the reference point will be at one of the corners of a pattern. For
hatched polygons, the hatch lines will be drawn so that one of them passes through the
reference point. Note that the reference point need not be inside the polygon.

The default values for both Xref and Yref are 0.0

Figure 12.3 Pattern definition, summary.

Figure 12.4 Hatch style definition, summary.

CALL PIREF (Xref, Yref)

Y

X

Ny(=4)

Nx(=5)

Xref

Yref
Dx

Dy

Attributes Defined by

Nx, Ny PATDEF

Dx, Dy PISIZ

Xref, Yref PIREF

Y

XXref

Yref

Angle

Hdist

Attribute(s) Defined by

Angle HTCDEF

Hdist PISIZ

Xref, Yref PIREF

8th Edition PAGE 12-10

Raster Graphics Last changed: Aug 9, 1995

GPGS-F User’s Guide

Example 12.3 User defined pattern and hatch styles.
C *****
C COMPLETE WORKING EXAMPLE.
C *****
C NOTE! A raster device should be used when running this program.
C
 INTEGER IPARR(4,3)
 REAL XPOL(4), YPOL(4)
 DATA IPARR/2,2,2,3, 2,2,2,3, 7,7,7,1/
 DATA XPOL/0.20, 0.25, 0.20, 0.15/
 DATA YPOL/0.20, 0.30, 0.40, 0.30/
C
C Read device number, initialize driver.
C
 READ *, IDEV
 CALL GPGS
 CALL NITDEV(IDEV)
 CALL BGNPIC(1)
C
C Select high quality texture rendering, pattern texture.
C
 CALL SOFPOL(2)
 CALL PITYP(2)
C
C Redefine pattern no. 3
C Set pattern size. Set reference point to centre of polygon.
C
 CALL PATDEF(3, IPARR, 4, 3)
 CALL PISIZ(0.02, 0.025, 0.0)
 CALL PIREF(0.2, 0.3)
C
C Draw a patterned polygon, with perimeter.
C
 CALL PRCIND(1)
 CALL POLY(XPOL, YPOL, 4, 3)
C
C Redefine hatch index 3 to 30 degrees, index 4 to 120 degrees.
C
 PI=3.14159
 CALL HTCDEF(3, PI/6.0)
 CALL HTCDEF(4, PI*4.0/6.0)
C
C Set hatch density and draw hatched (30˚)polygon.
C
 CALL PITYP(1)
 CALL PISIZ(0.0, 0.0, 0.02)
 CALL XLAT(0.2, 0.0)
 CALL POLY(XPOL, YPOL, 4, 3)
C
C Change hatch density and draw same polygon once more.
C Perimeter not needed this time.
C
 CALL PISIZ(0.0, 0.0, 0.01)
 CALL PRCIND(-1)
 CALL POLY(XPOL, YPOL, 4, 4)
 CALL ENDPIC
 CALL RLSDEV(IDEV)
 END

8th Edition PAGE 12-11

Raster Graphics Last changed: Aug 9, 1995

GPGS-F User’s Guide

Figure 12.5 User defined pattern and hatch styles
(generated by Example 12.3).

12.2.4.4 Applying Texture to 3D Polygons
Though all geometric attributes for polygon texture are defined in 2 dimensions, GPGS-F
is capable of texturing 3 dimensional polygons as well. This obviously applies to high
quality texture only, as low and medium quality texture is applied to transformed
polygons, i.e. the 2D projection of 3D polygons.

Texture rendering of a 3 dimensional polygon is performed as follows:

1) The polygon is projected into the users XY plane, by first applying an axonometric
projection, then translating the first vertex of the polygon to the users origin.

2) The texture is applied to the polygon.
3) The polygon, with the texture, is transformed back into 3 dimensional space.

However, this does mean that accurate specification of the texture for 3D polygons is not
possible. Thus, the recommended method is to define all polygons as 2 dimensional, and
transform these into 3D space using the GPGS-F transformation routines.

8th Edition PAGE 12-12

Raster Graphics Last changed: Aug 9, 1995

GPGS-F User’s Guide

12.3 Pixel Arrays
A pixel array is a drawing primitive that is defined the same way as a polygon pattern, i.e.
a two dimensional array of colour indices.

Pixel arrays will be correctly drawn only by devices capable of setting the colour of
individual pixels. If drawn with other devices, just the boundary is drawn using the current
colour index.

Pixel arrays are drawn by

Width and Height defines a rectangular area in user coordinates, into which the pixel
array is to be mapped. The lower left corner of the pixel array (Indarr(1,Ny)) is placed
at the current position, and it is drawn in the user’s XY plane at the current Z coordinate.
The current position is left unchanged by PIXARR.

Indarr is the pixel array, Nx and Ny is the number of cells to draw in X and Y direction.
Idimx must be equal to the first dimension of the pixel array as defined. The reason why
this is given in addition to Nx, is that it makes it possible to draw subareas of large pixel
arrays, as shown by Example 12.5.

12.3.1 Software / Hardware Generation
As with most GPGS-F primitives, the user may select whether pixel arrays are to be drawn
by software or hardware. This is selected by

where Isw=0 selects hardware, Isw=1 selects software. The default value is 0.

A software pixel array is subject to all GPGS-F transformations. The pixel array is scaled
according to the width and height specified, then sampled to find the colour index for each
pixel. Thus, the number of colour index values that is transferred to the driver depends on
the height and width of the pixel array, and the resolution of the device.

When hardware is selected, the height, width and the pixel array is sent to the device
driver. Some drivers are capable of scaling the pixel array to the given size, others will
just map one cell of the pixel array to one pixel on the display surface. In any case, the
lower left corner will be transformed to the specified position, but no other
transformations are applied.

If clipping is switched on, by using the CLICTL routine described on page 2-4, exact
clipping of software pixel arrays will be performed.

Hardware pixel arrays are not clipped, but are ignored if parts of the destination area is
outside the window.

CALL PIXARR (Width, Height, Idimx, Indarr(1,1), Nx, Ny)

CALL SOFPIX (Isw)

8th Edition PAGE 12-13

Raster Graphics Last changed: Aug 9, 1995

GPGS-F User’s Guide

Example 12.4 Hardware and software pixel array drawing.
C *****
C COMPLETE WORKING EXAMPLE
C *****
C NOTE! A raster device should be used when running this program
C
 INTEGER IPIX(8,8)
 DATA IPIX/ 1,1,1,2,2,3,3,3, 1,1,1,2,2,3,3,3
 + , 1,1,1,2,2,3,3,3, 2,2,2,2,2,2,2,2
 + , 2,2,2,2,2,2,2,2, 5,5,5,2,2,7,7,7
 + , 5,5,5,2,2,7,7,7, 5,5,5,2,2,7,7,7/
C
C Initialize device
C
 READ *, IDEV
 CALL GPGS
 CALL NITDEV(IDEV)
 CALL BGNPIC(1)
C
C Apply some transformations. Draw a hardware pixel array,
C and its defined outline.
 CALL XLAT(0.3, 0.2)
 CALL ROTAD(30.0, 1)
 CALL ROTAD(30.0, 3)
 CALL LINE(0.0, 0.0, 0)
 WIDTH = 0.075
 HEIGHT= 0.1
 CALL PIXARR(WIDTH, HEIGHT, 8, IPIX, 8, 8)
C
 CALL LINER(0.0, HEIGHT, 1)
 CALL LINER(WIDTH, 0.0, 1)
 CALL LINER(0.0, -HEIGHT, 1)
 CALL LINER(-WIDTH, 0.0, 1)
 CALL IDEN
C
C Draw same pixel array, to the right, using software.
 CALL SOFPIX(1)
 CALL XLAT(0.6, 0.2)
 CALL ROTAD(30.0, 1)
 CALL ROTAD(30.0, 3)
 CALL LINE(0.0, 0.0, 0)
 CALL PIXARR(WIDTH, HEIGHT, 8, IPIX, 8, 8)
 CALL LINER(0.0, HEIGHT, 1)
 CALL LINER(WIDTH, 0.0, 1)
 CALL LINER(0.0, -HEIGHT, 1)
 CALL LINER(-WIDTH, 0.0, 1)
C
 CALL ENDPIC
 CALL RLSDEV(IDEV)
 END

Figure 12.6 Pixel arrays (generated by the example above).

8th Edition PAGE 12-14

Raster Graphics Last changed: Aug 9, 1995

GPGS-F User’s Guide

Example 12.5 Pixel array subarea.
C *****
C COMPLETE WORKING EXAMPLE (mainly same code as previous example)
C *****
C NOTE! A raster device be used when running this program
C
 INTEGER IPIX(8,8)
 DATA IPIX/ 1,1,1,2,2,3,3,3, 1,1,1,2,2,3,3,3
 + , 1,1,1,2,2,3,3,3, 2,2,2,2,2,2,2,2
 + , 2,2,2,2,2,2,2,2, 5,5,5,2,2,7,7,7
 + , 5,5,5,2,2,7,7,7, 5,5,5,2,2,7,7,7/
C
C Initialize device
C
 READ *, IDEV
 CALL GPGS
 CALL NITDEV(IDEV)
 CALL BGNPIC(1)
 WIDTH = 0.075
 HEIGHT= 0.1
C
C Apply some transformations.
C
 CALL XLAT(0.3, 0.2)
 CALL ROTAD(30.0, 1)
 CALL ROTAD(30.0, 3)
 CALL LINE(0.0, 0.0, 0)
C
C Draw a 4 by 3 cell subarea of IPIX,
C with cell (3,5) as upper left corner
C
 CALL SOFPIX(1)
 CALL PIXARR(WIDTH, HEIGHT, 8, IPIX(3,5), 4, 3)
C
C Draw the outline of the specified pixel array area.
C
 CALL LINER(0.0, HEIGHT, 1)
 CALL LINER(WIDTH, 0.0, 1)
 CALL LINER(0.0, -HEIGHT, 1)
 CALL LINER(-WIDTH, 0.0, 1)
C
 CALL ENDPIC
 CALL RLSDEV(IDEV)
 END

Figure 12.7 Pixel array subarea (generated by the example above).

8th Edition PAGE 12-15

Raster Graphics Last changed: Aug 9, 1995

GPGS-F User’s Guide

12.3.2 Inquiring Pixel Values From the Display
A routine is available to inquire the contents of the display of a raster device. It works the
opposite way of PIXARR, but in a simplified way. This function is often not available due
to device hardware limitations.

The contents of a rectangular area of the display is read by

where Xwlow and Ywlow is the lower left corner of the rectangle in window coordinates.
If the position is known in NDC or user coordinates, it may be converted to window
coordinates using the routines described on page 8-14.

Nx and Ny are the number of pixel values, in X and Y direction, to return. The pixel
values, i.e. colour indices, are returned through Indarr. Idimx is the first dimension of
this array as defined, allowing parts of Indarr to be read.

Istat is a status variable returning 0 if all pixels were returned OK, -1 if the function was
not available with the device in use. If the arguments are given so that pixels outside the
display surface are referenced, a value of 1 is returned through Istat. In that case, pixel
readback is aborted.

CALL DATPIX (Xwlow, Ywlow, Idimx, Indarr(1,1),
Nx, Ny, Istat)

8th Edition PAGE 12-16

Raster Graphics Last changed: Aug 9, 1995

GPGS-F User’s Guide

8th Edition PAGE 13-1

Picture Element Attributes Last changed: Apr 7, 1995

GPGS-F User’s Guide

Chapter 13
Picture Element Attributes

The appearance of all picture elements (graphic primitives) depends on a number of
attributes. Some of these are specified with the drawing routines, others are set by global
routines. The most commonly used of the latter kind, the colour index, was described in
Chapter 11.

Picture elements also have some other attributes. As with the colour index, these are set
to a current value, which is applied to all primitives subsequently generated. All these
attributes are sent to the current device driver, and interpreted by this. Whether the
attributes actually give any visual effect will then be device dependent. Thus, the routines
described in this chapter should be avoided if device independency is a major goal.

There is an additional attribute, detectability, that is not described here. As this is used
only in connection with pick input, it is described in Chapter 20 with the other aspects of
pick input.

A common property of the global picture element attributes, is that they are all reset to
their default values when a new picture segment is opened by BGNPIC (see page 3-1).
The current value of the attributes may be requested by the DATATR routine described on
page 23-2.

13.1 Linewidth
Different colours are the preferred attribute for distinguishing between different parts of
a plot. For monochrome devices, different linewidths may be used instead.

In Chapter 9, routines for defining different linewidths by drawing a number of parallel
lines were described. Although device independent and very flexible, the method will
reduce drawing speed as the amount of data to transfer to the device increases.

As an alternative when using raster devices, different linewidths may be achieved by

where Wscal is a scaling factor, in the range 0.0 to 25.5, to be applied to the default
linewidth. With most devices, the default linewidth is 1 pixel wide, i.e. the fractional part
of Wscal is ignored, and it is not possible to specify lines thinner than the default.

Note that the specified linewidth will be applied to all lines, including software text and
circles. Whether the linewidth is applied to hardware generated primitives will be device
dependent.

The linewidth scaling factor is reset to its default value (1.0) when BGNPIC is called.

CALL LINWID (Wscal)

8th Edition PAGE 13-2

Picture Element Attributes Last changed: Apr 7, 1995

GPGS-F User’s Guide

13.2 Depth Modulation
Depth modulation is a hardware feature provided by 3 dimensional devices for visualizing
the Z coordinate, often by adjusting the intensity depending on the depth.

This feature is controlled by

where Iswtch=1 enables, and Iswtch=0 disables depth modulation. The default value is
0 (disabled).

The modulation range is specified by the Z range of 3 dimensional viewports (see page
2-3). That is, if intensity modulation is available, primitives at the lower Z limit will be
drawn with lowest intensity, primitives at the upper limit will be drawn with highest
intensity.

13.3 Blinking
An additional hardware feature that is available with some devices, is the ability to apply
blinking to primitives. This is controlled by

where Iswtch=1 enables, and Iswtch=0 disables picture element blinking. The default
value is 0.

CALL DEPCTL (Iswtch)

CALL BLICTL (Iswtch)

8th Edition PAGE 14-1

Picture Segment Storing Last changed: May 10, 1995

GPGS-F User’s Guide

Chapter 14
Picture Segment Storing

The most common use of GPGS-F is to present results of some computations or data
collections in a quite straightforward way. If the data is changed within the application,
the new data is presented after clearing the display surface, using CLRDEV (page 1-2),
i.e. the complete picture is redrawn. If the changes affect only parts of the picture, this
means that a lot of unnecessary redrawing is performed.

In addition to its drawing and interaction facilities described in previous chapters,
GPGS-F does however provide methods for storing and reusing pictures or parts of
pictures, allowing dynamic picture building and manipulation.

The graphic unit used in storage and manipulation operations is the picture segment. As
described in Chapter 3, a picture segment is a collection of graphic primitives and
attributes. There is no limit to the size of a picture segment. With some applications, there
may be a large number of segments, each containing very few primitives, with other
applications there may be just one large segment containing the complete picture.

It is not possible to change the contents of a picture segment after the definition is
completed, i.e. after ENDPIC is called.

14.1 Segment Classes
There are two classes of stored segments, called Pseudo Segments and Retained
Segments. These are stored in different ways, and they are used for quite different
purposes. An introductory description of the two classes, and the routines for defining
segment storage, are given in the following sections, details on how to use stored
segments are given by following chapters.

14.1.1 Pseudo Picture Segments
Pseudo segments are used for modelling purposes. The primitives are stored as
transformed user coordinates in a device independent format. The segments may later be
inserted when drawing on a terminal or plotter. When inserted, the primitives are
transformed once more, by the current transformation matrix.

Pseudo segments may be stored in buffers (arrays) supplied by the user, or in permanent
picture libraries (disc files). When using the second kind of storage method, segments may
be reused not only by the application creating the segments, but by other applications as
well.

8th Edition PAGE 14-2

Picture Segment Storing Last changed: May 10, 1995

GPGS-F User’s Guide

14.1.2 Retained Picture Segments
Retained segments are used for dynamic picture manipulation, and for simulating pick
input. Such segments may be used with terminals only, and are device dependant in the
sense that they belong to the device they have been created for.

With some terminals retained segments are stored in the terminal itself, giving fast update
of picture changes. For compatibility, GPGS-F provides a module for storing segments for
terminals that does not have local display files. This means that the same visual effect may
be achieved on all terminals, the difference being the speed with which the visual changes
are performed.

Retained segments may be manipulated by turning the visibility on/off, transformed using
image transformations, deleted or copied to a background device.

14.2 Picture Segment Identifiers
Picture segments that are to be stored must be given a unique identifier (supplied with the
BGNPIC routine). This identifier is stored in a Fortran integer, together with a 4-bit status
word. Thus, if a Fortran integer is 16 bits, the range is 1 to 4095, if a Fortran integer is 32
bits, the range is 1 to 268435455.

Each device driver does however keep a separate list of segments belonging to it (pseudo
segments ‘belong’ to device 0, the pseudo device). Thus, the same identifier may be used
for segments belonging to different drivers.

If an already used segment identifier is given, an error message is given, and the old
segment replaced by the new one.

14.3 Defining Picture Storage
Picture segments may be stored in primary buffers or in picture libraries. Pseudo
segments always require storage to be defined, either in buffer or library.

Retained segments are by some devices allowed to be stored in the device itself, in which
case no storage need to be allocated by the application program. There is however one
exception. If the segments are to be copied to a background device (described in Chapter
19), the segments must be stored in GPGS-F buffers.

If the device is not capable of storing segments by itself, simulated retained segments are
stored in GPGS-F buffers. Such segments may later be saved in library files, but all
segments that are visible on the screen must reside in buffers.

Whether a device is capable of storing retained segments in hardware is shown in the
driver descriptions in Appendix E, and may also be requested by using the DATDEV
routine described on page 23-4.

A program example using the different storage methods is given at the end of the chapter.

8th Edition PAGE 14-3

Picture Segment Storing Last changed: May 10, 1995

GPGS-F User’s Guide

14.3.1 Primary Buffers
A primary buffer is a Fortran integer array or equivalent, defined as a GPGS-F buffer by

where Iarr is the name of the array. Length is the number of integers in the array, and
must be less or equal to the size of the array as declared.

An array defined as a GPGS-F buffer must not be used for other purposes by the
application program, and must reside in permanent storage. With Fortran, this is ensured
by using the SAVE statement, placing the array in a COMMON area, or declaring the array in
the main program.

Example 14.1 Defining a GPGS-F buffer.
C
 PARAMETER (LENGTH=2000)
 INTEGER IARR(LENGTH)
 SAVE IARR
C
 CALL NITBUF (IARR, LENGTH)

Several primary buffers may be defined by a single application. GPGS-F keeps a list of
the buffers, where new buffers are put at the head when defined. When a new segment is
created, it will be stored in the buffer at the head of this list, i.e. the current buffer.

An already defined buffer may be moved to the head of the buffer list by

where Iarr is the array defined by NITBUF. New segments will then be stored in this
buffer, other effects are discussed in section 14.3.1.1

SELBUF is also used to switch back to primary buffer storage in cases where both
primary buffers and picture libraries are used (see the description of SELLIB, page 14-5).

If a buffer is no longer needed by GPGS-F, it may be released by

All picture segments in the buffer are then deleted. If the buffer contains retained
segments, these will also be deleted from the screen. No error will occur if buffers are not
released at program termination.

If the current buffer is released, the next one in the buffer list is set to current.

CALL NITBUF (Iarr(1), Length)

CALL SELBUF (Iarr(1))

CALL RLSBUF (Iarr(1))

8th Edition PAGE 14-4

Picture Segment Storing Last changed: May 10, 1995

GPGS-F User’s Guide

14.3.1.1 Programming Guidelines
Selecting the size of a buffer is not easy. The size will of course depend on how many
segments are to be stored, and the number of graphic primitives in each segment. The
problem is that GPGS-F does not provide any method for finding how much space is
needed for the different primitives and attribute settings.

The DATBUF routine described on page 23-8 may be used to find the amount of free and
used space in a buffer.

A segment is stored in a continuous part of the buffer, starting at the ‘top’. Thus, free space
is always at the end of the buffer. When a segment is deleted, its space is marked as
released, and all following segments are moved forward to compact the buffer when a new
segment is created. With a large buffer containing many segments, this may be quite time-
consuming. Using several buffers will reduce the time needed, as each buffer will then
contain fewer segments.

Using several buffers also has other effects. Whenever a segment operation is to be
performed, the given segment is searched for in all buffers in the sequence given by the
buffer list. SELBUF may be used to optimize this searching, but requires that the
application keeps track of which segments are stored in which buffer to have any effect.

When retained segments are redrawn (by using the REDRAW routine described on page
16-4), segments with the same priority are redrawn in the sequence given by the buffer
list. The same applies to pick input (described in Chapter 20), the buffer list determines
the sequence to be used by GPGS-F when scanning for hit.

Segment priority is described on page 17-3.

14.3.2 Picture Libraries
A major disadvantage of using primary buffers for segment storage is that the size of the
buffers may not be changed during program execution. In many cases it is not known how
many segments are to be stored. If the size is too small, the only way to change this is to
first change the application program, and then recompile and reload the program.

A second major disadvantage is that the segments stored in primary buffers are local to
the application in which they are created. There is no way to use the same segments by
other applications.

To help solve these problems, GPGS-F provides routines for storing picture segments on
disc files. This kind of segment storage is called picture libraries. When using picture
libraries, there is no limit to the size of the storage, as disc files normally are dynamically
extendable. Segments stored in picture libraries will remain in the file on program
termination, so that other applications may use the same segments.

Pseudo picture segments may be stored directly in picture libraries, and copied between
picture libraries and primary buffers (see page 14-6).

8th Edition PAGE 14-5

Picture Segment Storing Last changed: May 10, 1995

GPGS-F User’s Guide

Retained segments may be copied to and from picture libraries, but can be displayed only
when stored in a buffer. Obviously, if retained segments are stored in the device itself, they
may not be copied.

Files to be used as GPGS-F picture libraries must be opened by the application program.
As the Fortran OPEN statement will be different for different computers, GPGS-F provides
utility routines for opening and closing such files.

A file is opened by

where Iunit is the Fortran file number to use, in the range 1 to 99. Fname is the filename
(text string), Nrec is the maximum number of records to be stored in the file (this is
ignored by computers that are able to dynamically extend the file size) and Fstat is the
file status (text string, one of ‘new’, ‘old’, ‘unknown’). Istat is the returned status from
the Fortran OPEN statement, 0 (zero) if OK.

Once a file is opened, it may be defined as a picture library by

where Iunit is the Fortran file number, which must be the same number as used with
GUFSOP. NITLIB will not change to contents of the file, i.e. it may already contain
picture segments created by another application, or it may be an empty file to be used for
storing new segments.

A picture library is cleared, i.e. all picture segments within the file is deleted, by

where Iunit is the Fortran file number.

Up to 4 files may be used as picture libraries at the same time. The last one defined will
then be the current library. An already open library may be set to be the current one by

New segments will be stored in the current library. However, if a buffer is selected after
SELLIB, new segments will be stored in the selected buffer. Thus, even if only one buffer
and one picture library is used, SELBUF and SELLIB may still have to be used to specify
where segments are to be stored. The same is true when segments are to be deleted, by
using the DELPIC routine described on page 14-7.

Other segment operations are executed by separate routines for referring to segments in
buffers and libraries, or the operations are available with primary buffers only.

CALL GUFSOP (Iunit, Fname, Nrec, Fstat, Istat)

CALL NITLIB (Iunit)

CALL CLRLIB (Iunit)

CALL SELLIB (Iunit)

8th Edition PAGE 14-6

Picture Segment Storing Last changed: May 10, 1995

GPGS-F User’s Guide

When referring to segments, there is an important difference between primary buffers and
picture libraries. As described previously in this chapter, when referring to a segment
stored in a buffer, all buffers are searched until the segment is found. When a segment in
a library is referred, only the current library is searched.

This last fact implies an additional difference between buffers and picture libraries. The
picture segment identifier must be unique with respect to all primary buffers, while with
libraries, the identifier must be unique within each library.

When a picture library is no longer to be used by an application, it must be released by

If a picture library is not released, its contents may be inaccessible the next time it is
opened. This is because a file header is copied to GPGS-F when the file is defined as a
library by NITLIB. If some segments are deleted from, or added to the file, the copy of the
header is changed, but the modified header is not copied back until RLSLIB is called.

If the current library is released, there will be no current library, even if there are other
open libraries. A new current library must be explicitly set by SELLIB.

Finally, after releasing a library, the file must be closed by

where Iunit still is the Fortran file number. Istat is the returned status from the Fortran
CLOSE statement, 0 (zero) if OK.

14.4 Copying Segments
A picture segment may be copied from a primary buffer to a picture library by

where Idold is the segment identifier in the buffer, and Idnew is the identifier to be used
in the library. The segment is copied to the current library, selected by the last NITLIB or
SELLIB. The source segment need not be in the current buffer, as all buffers are searched.

Both pseudo and retained segments may be copied to a picture library.

Similarly, a segment may be copied from a library to a buffer by

where Idold and Idnew is the identifier of the source and destination segment. The
segment will be copied to the current buffer. Only the current library will be searched for
the segment. If not found there, an error message is given, but other libraries will not be
searched.

CALL RLSLIB (Iunit)

CALL GUFSCL (Iunit, Istat)

CALL SAVPIC (Idold, Idnew)

CALL RESPIC (Idold, Idnew)

8th Edition PAGE 14-7

Picture Segment Storing Last changed: May 10, 1995

GPGS-F User’s Guide

As mentioned earlier in this chapter, all segments belong to the device they were created
for. When copying a segment from a library to a buffer, the device this segment belong to
must have been initialized.

If the segment copied is a retained segment, it is marked as invisible, i.e. it will not be
drawn on the device it belong to. To make it visible, the VISPIC routine described on
page 17-1 must be used.

14.5 Deleting Segments
A picture segment may be deleted from a buffer or picture library by

where Ident is the picture segment identifier.

The segment is searched for in either the current library or in the primary buffers,
depending on whether NITLIB / SELLIB or NITBUF / SELBUF was last called.

As GPGS-F does not allow picture segments to be changed after they have been created,
the only way to ‘change’ a segment is to delete it and create a new segment with the same
identifier.

The effect of deleting retained segments is explained on page 16-4.

CALL DELPIC (Ident)

8th Edition PAGE 14-8

Picture Segment Storing Last changed: May 10, 1995

GPGS-F User’s Guide

Example 14.2 Picture segment storing.
 .
 .
 CALL NITBUF(IARR1,10000)
C New segments are stored in buffer ‘IARR1’
C
 .
 CALL NITBUF(IARR2,5000)
C New segments are stored in ‘IARR2’
C
 .
 CALL GUFSOP(IUNIT1, 'gpgs-01.dat', nrec, 'new', ISTAT)
 IF (ISTAT .NE. 0) CALL Error-Handler
 CALL NITLIB(IUNIT1)
C New segments are stored in library ‘IUNIT1’
C
 .
C
C Copy a segment from ‘IUNIT1’ to ‘IARR2’
C
 CALL RESPIC(ID1, ID2)
 CALL SELBUF(IARR1)
C New segments are stored in ‘IARR1’
C
 .
 CALL GUFSOP(IUNIT2, 'gpgs-02.dat', nrec, 'new', ISTAT)
 IF (ISTAT .NE. 0) CALL Error-Handler
 CALL NITLIB(IUNIT2)
C
C New segments are stored in library ‘IUNIT2’
C
 .
C
C Copy a segment from buffer IARR1 or IARR2
C to library ‘IUNIT2’
C
 CALL SAVPIC(ID3, ID4)
C
C Copy a segment from buffer IARR1 or IARR2
C to library ‘IUNIT1’
C
 CALL SELLIB(IUNIT1)
 CALL SAVPIC(ID5, ID6)
C
C Delete a segment from library ‘IUNIT1’.
 CALL DELPIC(ID1)
C
C Delete a segment from one of the buffers
 CALL SELBUF(IARR1)
 CALL DELPIC(ID3)
C
C Release buffers and libraries
 CALL RLSBUF(IARR1)
 CALL RLSBUF(IARR2)
 CALL RLSLIB(IUNIT1)
 CALL GUFSCL(IUNIT1, ISTAT)
 CALL RLSLIB(IUNIT2)
 CALL GUFSCL(IUNIT2, ISTAT)

8th Edition PAGE 15-1

Pseudo Picture Segments Last changed: Apr 7, 1995

GPGS-F User’s Guide

Chapter 15
Pseudo Picture Segments

Pseudo picture segments contain graphic and non graphic (attribute) elements stored in a
device independent form. The segments are created and stored by the PSEUdo driver,
which has GPGS-F device number 0 (zero).

Although this driver is special, the application program controls the driver as other
drivers, using the device control routines described in Chapter 1, i.e. NITDEV is used to
initiate, and SELDEV to set it to the current device.

RLSDEV is used to release the driver, but has the additional effect of deleting all pseudo
segments in primary buffers. Thus, even if the application first creates all pseudo
segments needed, then switches to a second device that are to use those segments, the
pseudo driver must not be released until the pseudo segments are not to be used any more.

CLRDEV will normally not be used with the pseudo driver, as there is no display surface
to clear. If called, the effect will be the same as with RLSDEV, i.e. all pseudo segments
are deleted from primary buffers.

15.1 Inserting Pseudo Segments
When the pseudo driver is active, picture segments are stored in the current buffer or
library, depending on which was last selected. Coordinates are stored after being
transformed by the current transformation matrix, but are not passed through the window-
to-viewport mapping.

At a later time the contents of these picture segments may be inserted into new segments
for any device. Inserted coordinates are then transformed once more, by the current
transformation at insertion time.

If a pseudo segment is stored on a primary buffer, it is inserted into the currently open
segment by

where Ident is the pseudo segment identifier. If several primary buffers are in use, all
buffers are searched, in the sequence given by the buffer list (see the description of
NITBUF and SELBUF on page 14-3).

CALL INSERT (Ident)

8th Edition PAGE 15-2

Pseudo Picture Segments Last changed: Apr 7, 1995

GPGS-F User’s Guide

If a pseudo segment is stored in a picture library, it is inserted by

where Iunit is the unit number of the library and Ident is the pseudo segment identifier.
Other libraries are not searched if the segment is not found in the library selected by Iunit.

As a pseudo segment is inserted into the open segment, some attribute setting functions
are also inserted. These will however not affect the settings of the open segment. Attribute
settings in the open segment will in the same way not affect the attributes of primitives
from the inserted segment.

As might be expected, inserting a segment from a buffer is faster than inserting from a file.
If the same segment is to be inserted more than once by an application, some time will be
saved by first copying the segment from file to buffer, using the RESPIC routine
described on page 14-6, and then inserting the segment from buffer each time it is needed.

15.1.1 Colour of Inserted Primitives
When INSERT or INSLIB is called, the current colour index (see page 11-2) will be set
to its default value of one. This will be used until a colour index command is found in the
inserted segment, i.e. all primitives will be drawn with the colour that was specified when
the pseudo segment was stored.

As pseudo segments are often used to define (small) building blocks that are later to be
put together, there will be cases where it is desirable to specify the colour at the time of
insertion.

This is possible by

where Imod=1 means that the colour index will not be set to default when INSERT /
INSLIB is called. The effect of this, is that the current colour index will be used for all
primitives inserted, until a colour index command is inserted. From then on, colours will
appear as if INSCOL was not used.

If COTIND was not used at all when a pseudo segment was created, the complete segment
will be drawn using the colour index that is current at insertion time.

If Imod is set to 0, the default condition is reset.

CALL INSLIB (Iunit, Ident)

CALL INSCOL (Imod)

8th Edition PAGE 15-3

Pseudo Picture Segments Last changed: Apr 7, 1995

GPGS-F User’s Guide

Example 15.1 Basic use of pseudo picture segments.
 INTEGER IARR(1000)
 .
 .
 CALL GPGS
 CALL NITBUF(IARR,1000)
C
C Create 2 pseudo picture segments in buffer,
C one red, one with no colour setting.
C
 CALL NITDEV(0)
 CALL BGNPIC(1)
 CALL COTIND(2)
 .
 CALL ENDPIC
 CALL BGNPIC(2)
 .
 CALL ENDPIC
C
C Select a colour device, open a picture segment and
C draw some primitives using colour index 3 (green).
C
 CALL NITDEV(72)
 CALL BGNPIC(7)
 CALL COTIND(3)
 .
C
C Insert both pseudo segments. Segment 1 will be red,
C segment 2 black (default)
C
 CALL INSERT(1)
 CALL INSERT(2)
 CALL ENDPIC
C
C Apply some transformations, open a new segment and
C draw some primitives using colour index 4 (blue)
C
 CALL TRANS(...)
 CALL BGNPIC(8)
 CALL COTIND(4)
 .
C
C Insert both pseudo segments once more,
C after calling INSCOL.
C
 CALL INSCOL(1)
 CALL INSERT(1)
 CALL INSERT(2)
C
C Segment 1 will still be red, as defined when created,
C while segment 2 will be blue.
C

8th Edition PAGE 15-4

Pseudo Picture Segments Last changed: Apr 7, 1995

GPGS-F User’s Guide

15.1.2 Areas of Application
Pseudo segments may be used for a wide range of different purposes. Perhaps the most
common one is to store frequently used subpictures in picture libraries. Other applications
may then use these segments to build more complex pictures, without having to create the
subpictures each time.

An additional advantage of using this method, is that if a subpicture is to be changed, only
the application creating the pseudo segments has to be changed. The applications using
the segments may be left unchanged, and need not even be recompiled.

Using pseudo segments is also useful when viewing complex 3D models. Quite often,
defining the transformations that give the best view of such models is not straightforward.
If the model is stored as a pseudo segment, experimenting with different transformations
does not require regeneration of the model each time. The same is true when different
projections of 3D models are to be drawn.

15.2 Clipping
The coordinates of pseudo picture segments are stored as transformed user coordinates. If
clipping is enabled (see page 2-4) during generation, coordinates are clipped before being
stored.

If clipping is enabled when the pseudo segment is later inserted, it will be clipped once
more, this time by the current window setting at insertion time.

Enabling clipping when creating pseudo segments is not very common. Using clipping at
insertion time, however, will often be most useful. By using different window and
viewport settings (or scaling), details of inserted segments may be viewed, i.e. a zooming
effect is achieved. 3D clipping may in addition be used to view ‘slices’ of 3D models at
different Z levels.

15.3 Pseudo Segment Reference
As described on page 15-1, INSERT and INSLIB will insert the contents of a pseudo
segment into the currently open segment. This is allowed even if the open segment is also
a pseudo segment. This may be used to create pseudo segments at different complexity
levels, first some basic building blocks, then compound segments containing these basic
segments.

However, this means that the code of the basic segments is duplicated. An additional
drawback is that if a basic segment is changed (deleted and recreated), all compound
segments using that segment must also be recreated to reflect the changes.

8th Edition PAGE 15-5

Pseudo Picture Segments Last changed: Apr 7, 1995

GPGS-F User’s Guide

To avoid these disadvantages, GPGS-F allows pseudo segments to contain symbolic
references to other pseudo segments. Such a reference is inserted into the currently open
segment by

where Ident is the pseudo segment referenced. GPGS-F does not require the referenced
segment to exist at the time the reference is inserted, i.e. the segments may be created in
any sequence.

When inserting a segment containing a reference from a primary buffer, the referenced
segment must also reside in a primary buffer, but not necessarily the same.

When inserting segments from a picture library, referenced segments must reside in the
same library as the segment containing the reference.

Symbolic references may be nested to a maximum of 10 levels. The number of references
at each level is however not limited.

When REFER is called, the current transformation matrix is inserted into the open
segment in addition to the reference. The (visual) effect of this will be the same as if the
referenced segment was inserted instead of referenced.

The mode set by INSCOL (page 15-2) will have the same effect for referenced segments
as inserted segments. That is, if INSCOL(1) is called, primitives generated ahead of the
first colour setting command will be drawn using the colour index that is current at the
time the reference is encountered.

CALL REFER (Ident)

8th Edition PAGE 15-6

Pseudo Picture Segments Last changed: Apr 7, 1995

GPGS-F User’s Guide

Example 15.2 Creating compound pseudo segments.
 INTEGER IBUFF(1000)
 .
C
C Define primary buffer for segment storage
C
 CALL GPGS
 CALL NITBUF(IBUFF,1000)
C
C Initialize pseudo driver.
C
 CALL NITDEV(0)
C
C Crate a basic picture part.
C
 CALL BGNPIC(1)
 CALL LINE(2.0, 0.0, 0)
 CALL LINE(0.0, 0.0, 1)
 CALL LINE(0.0, 1.0,0)
 CALL LINE(0.0,-1.0,1)
 CALL ENDPIC
C
C Create a compound segment containing two basic parts.
C
 CALL BGNPIC(2)
 CALL XLAT(0.2,0.0)
 CALL REFER(1)
 CALL IDEN
 CALL XLAT(-0.2,0.0)
 CALL ROTAD(180.0,3)
 CALL REFER(1)
 CALL ENDPIC
 CALL IDEN
C
C Create a third segment, containing four instances of
C segment 2 put together.
C
 CALL BGNPIC(3)
 CALL XLAT(0.0, 2.2)
 CALL REFER(2)
 CALL XLAT(0.0,-4.4)
 CALL REFER(2)
 CALL IDEN
 CALL ROTAD(90.0,3)
 CALL XLAT(0.0, 2.2)
 CALL REFER(2)
 CALL XLAT(0.0,-4.4)
 CALL REFER(2)
 CALL IDEN
 CALL ENDPIC

8th Edition PAGE 15-7

Pseudo Picture Segments Last changed: Apr 7, 1995

GPGS-F User’s Guide

Figure 15.1 Pseudo segments (defined by Example 15.2).

Segment 1 Segment 2

Segment 3

8th Edition PAGE 15-8

Pseudo Picture Segments Last changed: Apr 7, 1995

GPGS-F User’s Guide

8th Edition PAGE 16-1

Retained Picture Segments Last changed: May 10, 1995

GPGS-F User’s Guide

Chapter 16
Retained Picture Segments

Graphic information generated by GPGS-F is passed to the active device driver. Some
drivers will store the image in internal device display files, while most devices will just
draw the image on the display surface and discard the picture code.

Interactive programming with devices without picture storage is not without problems. In
order to make minor changes to the screen image, the screen has to be cleared, and the
complete changed image must be regenerated.

By introducing retained segments in this kind of programs, picture changes will be much
easier to handle.

Specifying that a picture segment is to be retained means that the contents of the segment
should be stored for later use. Some devices store the segments in device hardware, while
others require storage in GPGS-F buffers. In the last case, NITBUF (see page 14-3) must
be used to define these buffers.

Appendix E shows what drivers need GPGS-F buffers, and the DATDEV routine
described on page 23-4 may be used to get the same information from an application
program. If storage in GPGS-F buffers is required, all retained segment operations are
handled by a module called GPGS-F buffer/pick simulation module, or SIMU driver
(described on page E-4). If a device provides hardware storage, all operations on retained
segments are handled by the hardware or device driver.

16.1 Storage Mode
Whether picture segments will be retained or not, is controlled by a global storage mode
set by

Iswtch set to 1 will turn storage mode on, i.e. picture segments will be retained. Iswtch
set to 0 will turn storage mode off. By default the storage mode is 0 (off).

As mentioned, a major reason for using retained segments is that it makes it easy for the
programmer to make changes in a picture on the screen. Such changes include setting
visibility of segments (Chapter 17) and moving segments on the screen (Chapter 18).

CALL RETAIN (Iswtch)

8th Edition PAGE 16-2

Retained Picture Segments Last changed: May 10, 1995

GPGS-F User’s Guide

The action performed when a retained segment is changed, depends on the terminal type
and how the segment is stored.

If retained segments are stored in device hardware, the visual change is controlled by the
hardware. With raster terminals using GPGS-F buffers for storage, the visual change is
controlled by the GPGS-F SIMU driver (described on page E-4). Deleting a segment or
making it invisible is done by redrawing the segment using the background colour
(selective erase). This will give the unwanted effect that ‘holes’ will appear in other
segments if primitives overlap.

With devices not capable of performing selective erase, the complete image must be
redrawn each time a segment is made invisible or deleted. Whether this redrawing is done
automatically by GPGS-F is controlled by the deferral mode described next.

16.2 Deferral Mode
In cases where several segments are to be changed, it may be faster to defer the changes
until all segments are changed, and then redraw the complete image, than to perform each
change in sequence. The reason for this is that the time needed to make a segment
invisible will be the same as needed to draw the segment.

Deferral of picture changes is controlled by

Idefer selects when the display is to be updated:
0: Update the display as soon as possible.
1: Update before next interaction. (i.e. when a request input routine or

AWAIT is called)
2: Do not update until requested by user.

Deferral mode is said to be set when Idefer is 1 or 2. By default deferral mode is not set.

The action necessary, and time needed, to keep the screen updated is quite different
depending on whether the terminal is capable of performing selective erase or not.

If deferral mode is set, Ialdev is used to select which devices this applies to.
0: Defer only when for devices without selective erase.
1: Defer for all devices.

When deferral mode is set, GPGS-F will do some optimization to avoid unnecessary
redrawing. When the visibility of a segment is switched on, or a new segment is created,
and nothing is yet deferred, the segment will be drawn at once. If a segment is made
invisible, the action will be deferred, and so are all subsequent changes.

When picture changes have been deferred, and the screen is to be updated (by user request
or internal GPGS-F action), this is always done by first clearing the screen and then
redrawing all segments currently set visible. This means that if there are segments on the
screen that are not retained, these will disappear.

CALL DEFER (Idefer, Ialdev)

8th Edition PAGE 16-3

Retained Picture Segments Last changed: May 10, 1995

GPGS-F User’s Guide

If the user wants the display to be updated without changing the deferral mode, this is
done by

Iregen set to 1 means that the picture should be redrawn if there are deferred changes.
Iregen set to 0 will not redraw the picture, just ensure that the internal driver buffer is
emptied. In both cases the device will be set in non graphic mode. There is no need to use
UPDAT(0) if there is no picture segment open, as ENDPIC will already have performed
the same actions.

Calling UPDAT(1) when deferral mode is set, has the same effect as:

 CALL DEFER(0, 0)
 CALL DEFER(Previos-Idefer, Previous-Ialdev)

Example 16.1 Using DEFER and UPDAT.
 CALL DEFER (1, 0) Set deferral mode for devices with no

selective erase.
 make-seg-1 visible Segment always made visible as nothing is

yet deferred.
 delete-seg-2 Deleted if selective erase possible. If

not, deferred.
 make-seg-3 visible Made visible if selective erase possible.

If not, deferred.
 CALL UPDAT (1) Picture redrawn if selective erase not

available. If selective erase available,
display is up to date, i.e. no action
necessary.

On page 17-4 there is an example of a complete program using DEFER and UPDAT.

16.2.1 Compatibility Routines
In previous versions of GPGS-F, deferring picture changes was done by collecting
the changes in batches. To provide backwards compatibility these routines are still
available.

A batch of updates starts with

and ends with

Calling BGNBTC has the same effect as calling DEFER(2,1), while ENDBTC
equals DEFER(0,0).

When writing new programs, DEFER / UPDAT / REDRAW should be used instead
of these compatibility routines.

If updating old programs, either continue using BGNBTC / ENDBTC throughout
the program, or replace all occurrences of BGNBTC / ENDBTC with the new
routines.

CALL UPDAT (Iregen)

CALL BGNBTC

CALL ENDBTC

8th Edition PAGE 16-4

Retained Picture Segments Last changed: May 10, 1995

GPGS-F User’s Guide

16.3 Redrawing
When doing changes on a terminal using selective erase, there will be ‘holes’ in the
picture if deleted segments overlap other segments. This is especially noticeable if deleted
segments contain polygons.

To ‘repair’ these holes, all visible segments may be redrawn by

The difference between using REDRAW and UPDAT(1) is that UPDAT(1) will redraw
the picture only if there are deferred actions, while REDRAW will redraw the picture in
any case.

Redrawing is done by first clearing the display, then all visible segments are redrawn in
the sequence given by the segment priority (set by the PRIPIC routine described on page
17-3). Thus, if there are any segments that are not retained, these will disappear when
calling REDRAW.

When using a multi window device (Chapter 21), there is a separate routine available for
redrawing the segments belonging to a given window.

16.4 Deleting Segments
As described in Chapter 14, a segment may be deleted by

where Ident is the picture segment identifier. If this is a retained segment, it is first made
invisible (if currently visible), and then deleted from internal hardware storage or
GPGS-F buffer. Only segments belonging to the current active device may be deleted, i.e.
to delete segments from another device, SELDEV (page 1-2) must be called to set the
device to current before calling DELPIC.

Calling CLRDEV will, in addition to clearing the display surface, delete all retained
segments belonging to the device given.

When a picture buffer is released by RLSBUF (page 14-3), any retained segments in that
buffer is made invisible before being deleted. This applies to all devices currently in use,
not only the current active device.

CALL REDRAW

CALL DELPIC (Ident)

8th Edition PAGE 17-1

Retained Segment Attributes Last changed: May 10, 1995

GPGS-F User’s Guide

Chapter 17
Retained Segment Attributes

Each retained segment is stored with four different attributes. These are visibility,
highlighting status, priority and detectability. The last one is used in connection with pick
input and is described in Chapter 20. The other attributes are described in the following
subsections.

All routines controlling segment attributes apply to the current active device. If multiple
devices are in use, the actual device must be set to current, by using the SELDEV routine
described on page 1-2, before changing attributes of segments belonging to it.

As stated in Chapter 16, retained segments are handled either by device hardware or by
the SIMU driver (described on page E-4). In the last case, the segments are often referred
to as ‘software simulated’.

17.1 Visibility
The visibility of a retained picture segment is set by

where Ident is the picture segment identifier, and Isw is the visibility (0=invisible,
1=visible). By default, new segments are visible.

A software simulated segment is made invisible by redrawing it using the background
colour. Thus, if segments overlap, parts of other segments will be erased as well. When
the segments are handled by device hardware, such unwanted effects will normally not
occur.

‘Destroyed’ segments may be fixed by using the REDRAW routine described on page
16-4. An individual segment may also be redrawn, by calling VISPIC with Isw set to 1
even if the segment is already visible. This works because GPGS-F does not check the
current visibility when a segment is set to be visible.

When non retained segments are created, the graphic primitives will be sent directly to the
device driver and displayed immediately, with a possible delay due to driver buffering.

When creating a (software simulated) retained segment however, the graphic primitives
are just stored by the SIMU driver, and sent to the current device driver when the segment
is closed by ENDPIC. This default behaviour may be overruled by specifying the
visibility of the segment while it is still open.

CALL VISPIC (Ident, Isw)

8th Edition PAGE 17-2

Retained Segment Attributes Last changed: May 10, 1995

GPGS-F User’s Guide

Setting an open segment visible has the effect that all primitives generated so far will be
displayed, and subsequent primitives will be displayed as soon as possible. This is useful
if a retained segment is to be interactively generated.

Setting an open segment invisible will have no visual effect when VISPIC is called, but
when the segment is closed, it will not be displayed.

Example 17.1 Visibility of new segments.

Note that the description above applies to software simulated segments only. When
segments are stored by device hardware, the effect is device dependent (some devices do
not allow visibility setting of an open segment).

Program code Comments

CALL RETAIN(0)
CALL BGNPIC(1)
.
CALL LINE(X,Y,IVIS)
.
CALL ENDPIC

Segment not to be retained

Displayed as soon as driver buffer is full.

Empties driver buffer

CALL RETAIN(1)
CALL BGNPIC(2)
.
CALL LINE(X,Y,IVIS)
.
CALL ENDPIC

Segment to be retained

Not displayed yet

Complete segment is displayed

CALL RETAIN(1)
CALL BGNPIC(3)
.
CALL LINE(X,Y,IVIS)
CALL VISPIC(3,1)
.
CALL LINE(X,Y,IVIS)
.
CALL ENDPIC

Segment to be retained

Not displayed yet
All primitives generated so far is displayed

Displayed as soon as driver buffer is full

Empties driver buffer

CALL RETAIN(1)
CALL BGNPIC(4)
.
CALL LINE(X,Y,IVIS)
CALL VISPIC(4,0)
.
CALL ENDPIC

Segment to be retained

Not displayed yet
No visual effect

Segment is not displayed

8th Edition PAGE 17-3

Retained Segment Attributes Last changed: May 10, 1995

GPGS-F User’s Guide

17.2 Highlighting
A second attribute of retained segments is the highlighting or blinking mode. This is
controlled by

where Ident is the segment identifier, and Isw is the highlighting/blinking mode (0=off,
1=on).

Note that this feature is not software simulated, i.e. it is available only with devices storing
segments in hardware. The method used for highlighting/blinking a segment is device
dependent.

By default the highlighting/blinking mode is off.

17.3 Priority
As segments are displayed, new segments will be drawn ‘on top of’ previous segments.
Making a segment visible will have the same effect.

In some cases this will not give the wanted result, especially if segments contain
polygons. If, for example, there are two segments, one containing a solid polygon, and the
other containing a text supposed to be written inside the polygon, the text will not be
visible if the polygon is displayed last.

To allow the application to control the sequence by which segments are displayed, there
is a segment priority attached to each segment. This is set by

where Ident is the segment identifier, and Ipri is the new priority of the segment. The
lowest priority is 0 (zero), while the upper limit is device dependant, when segments are
stored by device hardware. With software simulated segments, the upper limit is 32767.

Default priority for new segments is 0. Setting the priority of the current open segment
will have no effect, it will still be drawn on top of previously drawn segments.

The priority is used when segments are redrawn using the REDRAW routine described
on page 16-4.The segments will be drawn in the sequence given by the segment priority,
starting with the lowest priority. If there are two or more segments with the same priority,
the segment buffers are searched in the sequence given by the buffer list (see the
description of the NITBUF and SELBUF routines on page 14-3). Within each buffer, the
sequence is given by the segment identifiers, starting with the lowest one.

In addition to the redrawing sequence, the segment priority also determines the sequence
to use when searching for pick input (described Chapter 20), and when copying segments
to a possible background device (described in Chapter 19).

CALL BLIPIC (Ident, Isw)

CALL PRIPIC (Ident, Ipri)

8th Edition PAGE 17-4

Retained Segment Attributes Last changed: May 10, 1995

GPGS-F User’s Guide

Example 17.2 Segment visibility.
C *****
C COMPLETE WORKING EXAMPLE
C *****
 INTEGER IARR(1000)
 PRINT *,’ Give device number’
 READ *, IDEV
 CALL GPGS
 CALL NITDEV(IDEV)
 CALL NITBUF(IARR, 1000)
C
C Generate a non retained p.s.
 CALL BGNPIC(1)
 CALL LINE(0.1, 0.9, 0)
 CALL CHARC('PS.1 - not retained')
 CALL ENDPIC
C
C Generate three retained p.s.
 CALL RETAIN(1)
 CALL BGNPIC(2)
 CALL LINE(0.1, 0.7, 0)
 CALL CHARC('PS.2 - retained')
 CALL ENDPIC
C
 CALL BGNPIC(3)
 CALL LINE(0.1, 0.5, 0)
 CALL CHARC('PS.3 - retained')
 CALL ENDPIC
C
 CALL BGNPIC(4)
 CALL LINE(0.1, 0.3, 0)
 CALL CHARC('PS.4 - retained')
 CALL ENDPIC
C
C Set deferral mode and make p.s. 2 and 3 invisible.
C Screen is cleared at UPDAT and only p.s. 4 is redrawn.
 CALL DEFER(2, 1)
 CALL VISPIC(2, 0)
 CALL VISPIC(3, 0)
 CALL UPDAT(1)
C
C Turn deferral mode off and make p.s. 2 visible again.
 CALL DEFER(0, 0)
 CALL VISPIC(2, 1)
C
C Try to make p.s. 1 visible.
C Will give error message - p.s. 1 is not retained
 CALL VISPIC(1, 1)
 CALL RLSDEV(IDEV)
 END

The example above must be run with a device allowing retained segments. To see the
effect of the different subroutine calls, an input routine may be called at various points.

8th Edition PAGE 18-1

Image Transformations Last changed: Apr 7, 1995

GPGS-F User’s Guide

Chapter 18
Image Transformations

As described in Chapter 6, GPGS-F provides a complete set of routines for modelling
transformations. These are used to set up a transformation matrix to transform all user
coordinates before displayed on the display surface. This is a powerful tool for building
complex objects from simpler parts, possibly defined in their own local coordinate
systems.

Modelling transformations may however not be used to transform a picture, or parts of a
picture, after it is displayed. To do this, another class of transformations, called image
transformations, are available. Image transformations apply to retained picture segments
belonging to the current active device.

Coordinates used with this kind of transformations are given in Normalized Device
Coordinates (see page 2-2). As opposed to modelling transformations, image
transformations are not cumulative, i.e. they always apply to the segments as originally
created.

With the current version of GPGS-F the only image transformation available is
translation.

The image transformation routines may not be called if a picture segment is open.

A retained picture segment is translated by

or

where Ident is the picture segment identifier, and (Xdisp, Ydisp [,Zdisp]) is the new
position of the segment relative to its original position.

If VXLAT3 is used with a 2D device, the Zdisp value will be ignored.

The image transformation matrix of a segment is reset to the identity matrix by

where Ident is the picture segment identifier.

As long as the only image transformation available is translation, CALL VIDEN(Ident)
will give the same visual effect as CALL VXLAT(Ident, 0.0, 0.0). If/when additional
image transformation routines are added, this will not longer be true.

CALL VXLAT (Ident, Xdisp, Ydisp)

CALL VXLAT3 (Ident, Xdisp, Ydisp, Zdisp)

CALL VIDEN (Ident)

8th Edition PAGE 18-2

Image Transformations Last changed: Apr 7, 1995

GPGS-F User’s Guide

Example 18.1 Interactively moving a segment on screen.
C ****
C COMPLETE WORKING PROGRAM
C ****
 INTEGER IBUFF(1000)
C
C Initialise driver and picture buffer
C
 READ *,IDEV
 CALL GPGS
 CALL NITDEV(IDEV)
 CALL NITBUF(IBUFF, 1000)
 CALL RETAIN(1)
C
C Create a retained picture segment.
C
 IPIC=3
 CALL BGNPIC(IPIC)
 CALL LINE(0.5, 0.5, 0)
 CALL CHARC('Retained p.s.')
 CALL ENDPIC
C
 1000 CONTINUE
C
C Wait for interrupt from locator device
C
 CALL REQLOC(201, XNDC, YNDC)
C
C Use given position as new start position of string
C until pointing far right.
C
 IF (XNDC.LE.1.0) THEN
 CALL VXLAT(IPIC,XNDC-0.5, YNDC-0.5)
 GOTO 1000
 ENDIF
C
 CALL RLSDEV(IDEV)
 END

8th Edition PAGE 19-1

Background Device Last changed: Jan 18, 1996

GPGS-F User’s Guide

Chapter 19
Background Device

As stated in Chapter 1, graphic output is created for only one device at a time. To make
the same picture on two devices, the same sequence of GPGS-F calls must be executed
for the two devices.

In cases where a picture is interactively built on a terminal screen, this means that it is not
straightforward to get a copy of the picture on a second device, in most cases a plotter or
printer.

In order to ease this, it is possible to tell GPGS-F that the picture build is to be kept for
later copying to another device. This second device is called the background device,
while the device on which the picture is build, is often referred to as the source device.

Any device may be used as a background device, while only devices able to handle
retained segments may be used as a source device.

A device is selected as a background device by

where Idev is the GPGS-F device number. This device must have been initialized by
NITDEV (see page 1-2).

Throughout an application program, several different background devices may be used,
but only one at a time. The last one selected by BACDEV will be current.

The picture on the source device is copied by

which will copy all retained segments (see Chapter 16) that are currently visible to the
background device. The segments will be copied in the sequence given by the segment
priority (set by PRIPIC, page 17-3), starting with the lowest priority.

Storage space for these segments must be defined by NITBUF (see page 14-3), even if the
source device is able to store picture segments in hardware, i.e. the segments will be
stored both in hardware and in the buffer. Thus, BACDEV must be called before
generating any segments on the source device, to tell GPGS-F that the segments need to
be stored.

When the source device stores segments in hardware, and the background device is no
longer to be used, the additional buffer storing may be switched off by BACDEV(-1). If
retained segments are software simulated, this will have no effect, as the segments then
are stored in buffers in any case.

CALL BACDEV (Idev)

CALL BACDRW

8th Edition PAGE 19-2

Background Device Last changed: Jan 18, 1996

GPGS-F User’s Guide

If the application program initially does not know what device is to be used as background
device, driver number 1 (see Appendix E) may be initialized and specified as the
background device, just to ensure that segments are stored. Then, at some later point, the
actual background device may be selected by just calling BACDEV once more.

BACDRW may be called several times to get different hardcopies as the picture on the
source device is changed, or new segments are added. Each copy may be placed on a
separate page, by clearing the background device between each call to BACDRW, or
several copies may be placed on a single page by using the BACVPT routine described
in section 19.1.

The background device may also be used for direct output, by just selecting this as the
current active device using SELDEV (see page 1-2). When BACDRW is called, the
source device must however be the active device.

19.1 Background Viewport
When making a copy on the background device, the default viewport of the source device
will be mapped onto the default viewport of the background device.

The viewport of the background device may however be specified by

where Bvarr is a viewport array specified as with VPORT (see page 2-3). This will
define the mapping to use when copying a picture from the source device, but will have
no influence when using the background device for direct output.

Specifying the background viewport is especially useful when the hardcopy is to have a
given physical size. To find the values to use for Bvarr, the method used in the example
on page 5-2 may be used. BACVPT may also be used to position several hardcopies in a
single page on the background device.

19.2 Limitations
All graphic primitives will be copied from the source to the background device. Hardware
generated primitives may however appear quite different when copied. Circles may not
be drawn at all, and text may appear with a different font, size and rotation than on the
source device. Pixel related primitives, i.e. patterned polygons and pixel arrays, will for
sure not be identical, as there are no two devices with the exact same resolution.

In general, hardware generated primitives should be avoided if the major goal is to get
hardcopies that are as identical as possible to the source picture, or if several different
background devices are to be used. If, on the other hand, the major goal is to get high
quality hardcopies on a given background device, this is achieved by using primitives that
not necessarily give the best picture quality on the source device, but are known to be give
the best result on the selected background device.

CALL BACVPT (Bvarr(1))

8th Edition PAGE 19-3

Background Device Last changed: Jan 18, 1996

GPGS-F User’s Guide

Example 19.1 Using a background device.
 INTEGER IBUFF(5000)
 REAL BVARR(4)
C
 DATA BVARR/0.0, 0.5, 0.0, 0.5/
C
 CALL GPGS
C
C Initialize the PostScript and X11 drivers.
 CALL NITDEV(90)
 CALL NITDEV(72)
C
C Specify that PostScript is to be used as background device.
 CALL BACDEV(90)
C
C Specify storage space for segments, turn retain mode on.
 CALL NITBUF(IBUFF, 5000)
 CALL RETAIN(1)
C
C Draw some segments on the screen
C (current device as it was last initialized).
 CALL Draw_Segments
C
C Make a PostScript copy.
 CALL BACDRW
C
C Do some picture changes on the screen.
 CALL Change_Picture
C
C Make a new hardcopy, in the lower left quadrant of a new page.
 CALL CLRDEV(90, 0)
 CALL BACVPT(BVARR)
 CALL BACDRW
C
C Do more picture changes.
 CALL Change_Picture
C
C New hardcopy, on same page as previous, lower right quadrant.
 BVARR(1)=0.5
 BVARR(2)=1.0
 CALL BACVPT(BVARR)
 CALL BACDRW
C
C Add a heading and frame to the last PostScript page.
 CALL SELDEV(90)
 CALL Heading_and_Frame
C
C Release devices and exit.
C
 CALL RLSDEV(90)
 CALL RLSDEV(72)
C
 END

8th Edition PAGE 19-4

Background Device Last changed: Jan 18, 1996

GPGS-F User’s Guide

8th Edition PAGE 20-1

Pick Input Last changed: Apr 7, 1995

GPGS-F User’s Guide

Chapter 20
Pick Input

As described in Chapter 8, the interaction tools supported by GPGS-F are divided into
classes according to the information the tools return.

The most advanced input class is pick input. Pick input means that the user may use some
kind of pointing device to identify graphic elements in the display. This kind of interaction
was in the early days of computer graphics available by using a lightpen connected to a
refresh terminal with a local display file. Today, the lightpen is simulated by a locator
device, such as a graphic cursor, and the display file is replaced by segment storage, either
in hardware or in GPGS-F primary buffers.

To be identified by pick input, a graphic element must meet the following requirements:
• It must be part of a retained picture segment (see Chapter 16). If the device in use

requires segment storage in GPGS-F buffers, storage space must be defined by
NITBUF (described on page 14-3).

• It must have one or more names (integer identifiers) attached to it.
• It must be detectable.
• The segment which the element is part of must be detectable.

(Detectability is also referred to as lightpen sensitivity, for historical reasons.)

20.1 Element Namestack
The pick input routines will return the namestack of the graphic element pointed at. The
namestack is an array of identifiers, where the first element is the identifier of the picture
segment. The rest of the array is a list of names attached to the element. As the length of
the total namestack is returned, the number of names will then be one less than this length.

If no detectable graphic element was pointed at, the input routines will return 0 (zero) as
namestack length. The length will never be returned as 1, as detectable elements must
have at least one name.

A name is attached to a single graphic element by

where Iname is an integer in the range 1 to 4095. This name is attached to the element
generated by the next GPGS-F routine called.

Element names need not be unique, i.e. the same name may be attached to several
elements within the same segment, and to elements within different segments.

CALL NAME (Iname)

8th Edition PAGE 20-2

Pick Input Last changed: Apr 7, 1995

GPGS-F User’s Guide

Example 20.1 Picture element naming.
 .
C Assign name 1 to a line.
 CALL NAME(1)
 CALL LINE(X, Y, 1)
 .
C Assign name 2 to a polyline.
 CALL NAME(2)
 CALL TABL(XARR, YARR, 10, 1)
 .
C Assign name 3 to a string.
 CALL NAME(3)
 CALL CHARC('Named string')

Note that names will also be assigned to invisible lines, i.e. moves. Hence, the sequence
 CALL NAME(1)
 CALL LINE(X, Y, 0)
 CALL CHARC('String')

will name the move, not the string, i.e. NAME must be called immediately ahead of the
routine generating the graphic element to be named.

If several graphic elements are to have the same name, it is not necessary to set the name
of each element. Instead a whole group of elements may be named by

before generating the first element of the group, and

after generating the last element of the group.

BGNNAM / ENDNAM may be nested to give more than one name to elements, i.e.
instead of a single name, a list of names (a namestack) is stored with the elements. The
number of nested names is device dependent, and may be requested by the DATDEV
routine described on page 23-4. When retained picture segments are stored in GPGS-F
buffers, names may be nested to a maximum of 9 levels.

Each BGNNAM call will push the given name on the namestack, while ENDNAM will
remove the last added name from the stack. The pick input routines return the namestack
with the highest level name first, as shown by Example 20.2.

CALL BGNNAM (Iname)

CALL ENDNAM

8th Edition PAGE 20-3

Pick Input Last changed: Apr 7, 1995

GPGS-F User’s Guide

Example 20.2 Nested element names.

20.2 Element Detectability
In addition to having a name, elements must be detectable to be identified by the pick
input routines. Detectability is controlled by a global switch set by

where Isw=1 means on, Isw=0 means off. The current value of this switch is stored with
graphic elements when created.

By default, i.e. when a new segment is opened, the detectability switch is on. However,
the value is not stored with elements created before LPSCTL is called the first time. When
working with retained segments only, this is of no significance, but it may be used to
achieve special effects when pseudo segments are inserted into retained segments, as
described on page 20-7.

The only case where LPSCTL is useful if pseudo segments are not involved, is if some
undetectable elements are to be created within a sequence of detectable elements. If the
line marked xx in Example 20.2 should not be detectable, the easiest way to achieve this
would be to call LPSCTL(0) ahead of the LINE call, and LPSCTL(1) after the call. The
alternative would be to insert a number of ENDNAM calls to empty the namestack, and
then a sequence of BGNNAM calls to restore the namestack afterwards.

Program code Namestack

xx

CALL BGNPIC(1001)
.
CALL LINE(X, Y, 1)
CALL BGNNAM(100)
CALL LINE(X, Y, 1)
CALL BGNNAM(10)
CALL LINE(X, Y, 1)
CALL NAME(1)
CALL LINE(X, Y, 1)

CALL LINE(X, Y, 1)
CALL BGNNAM(2)
CALL LINE(X, Y, 1)
CALL LINE(X, Y, 1)

CALL ENDNAM
CALL LINE(X, Y, 1)

CALL ENDNAM
CALL BGNNAM(20)
CALL LINE(X, Y, 1)
CALL NAME(1)
CALL LINE(X, Y, 1)

CALL LINE(X, Y, 1)
CALL ENDNAM
CALL LINE(X, Y, 1)

CALL ENDNAM
CALL LINE(X, Y, 1)

Empty

1001 100

1001 100 10

1001 100 10 1
1001 100 10

1001 100 10 2
1001 100 10 2

1001 100 10

1001 100 20

1001 100 20 1
1001 100 20

1001 100

Empty

CALL LPSCTL (Isw)

8th Edition PAGE 20-4

Pick Input Last changed: Apr 7, 1995

GPGS-F User’s Guide

20.3 Segment Detectability
As mentioned, the element namestack and detectability are stored with the graphic
elements, and may thus not be changed after the elements have been created.

The application program will still be able to control, at runtime, which parts of a picture
that are detectable, as detectability is also a segment attribute.

The segment detectability is set by

where Ident is the picture segment identifier, and Isw is the detectability switch. A value
of 0 means off, 1 means on. By default, the switch if off.

As stated on page page 20-1, both the element and segment detectability must be set for
a graphic element to be identified by pick input.

The example below shows all the routines necessary to build a segment containing
detectable graphic elements.

Example 20.3 Creating detectable graphic elements.
 INTEGER IBUFF(5000)
 .
 .
C Define segment storage, set retained mode on.
 CALL NITBUF(IBUFF, 5000)
 CALL RETAIN(1)
C
C Open a picture segment, and draw elements that are not
C to be detectable
 CALL BGNPIC(1)
 CALL LINE(X, Y, 0)
 CALL CHARC('Not detectable')
 .
 .
C
C Draw the elements that are to be detectable,
C using the same name for all.
 CALL BGNNAM(100)
 CALL LINE(X, Y, 0)
 CALL CHARC('Detectable elements')
 .
 .
 CALL ENDNAM
C
C Following elements will not be detectable.
 CALL ENDNAM
 .
 .
C
C Close the segment and make it detectable.
 CALL ENDPIC
 CALL LPSPIC(1, 1)

CALL LPSPIC (Ident, Isw)

8th Edition PAGE 20-5

Pick Input Last changed: Apr 7, 1995

GPGS-F User’s Guide

20.4 Scanning for Hit
When the application program calls one of the pick input routines, REQHIT (page 8-3)
or SMPHIT (page 8-4), GPGS-F will return the namestack of the element, or a namestack
length of 0 if no detectable element was pointed at.

Pointing at an element means that at least a part of the element must be within the hit
rectangle. This is defined by the position of the pick tool and the pick aperture size (see
page 8-9). The size of the hit rectangle thus determines how accurate the user must be
when pointing.

If segments are stored in hardware, the information is returned directly by the device
driver. If segments are stored in GPGS-F buffers, the information is found by software,
using the SIMU driver (described on page E-4). Although the application programmer
does not need to know the details of this procedure, it may give some hints on how to
speed up execution time, which should be a major goal for any interactive program.

The SIMU driver will receive the hit rectangle from the device driver. Then, all retained
segments that are currently visible and detectable are found, and sorted in priority order
(the priority is set by PRIPIC described on page 17-3), with the highest priority first.
Segments with the same priority are ordered according to the buffer list (see NITBUF and
SELBUF on page 14-3). Within each buffer, the segments are sorted by the segment
identifier, with the lowest number first.

Once the ordered segment list is completed, the actual scanning starts. Taking one
segment at a time, each graphic element is checked if it has a name and is detectable, and
if so, the rules given below are used to find whether it was hit. The scanning is aborted as
soon as a element is found, i.e. the SIMU driver will not attempt to find the element that
is closest to the pick tool position.

The following rules are used to find whether an element is hit:
• A line is hit if it intersects the hit rectangle.
• Software characters / circles, and hollow / hatched polygons are represented as

lines, and are checked as such.
• A hardware circle arc is hit if it passes through the hit rectangle.
• Hardware text is hit if the surrounding box intersects the hit rectangle. If the device

driver is not able to return the correct box, the box surrounding the given text if it
was drawn using software font 0 is used.

• A marker is hit it its centre is within the hit rectangle.
• A solid or patterned polygon, or a pixel array, is hit if it overlaps the hit rectangle.

Following from the description above, there are several aspects that influence the time
needed to detect a hit. The most important is the number of detectable segments, and their
priority. How the graphic elements are grouped into segments will however also be
essential. As all elements has to be scanned, undetectable elements should, if possible, not
be mixed with detectable elements. To further improve response time, software text
should not be used as detectable elements, such as menu items (Example 20.4 shows how
a text menu may be build using undetectable text strings).

8th Edition PAGE 20-6

Pick Input Last changed: Apr 7, 1995

GPGS-F User’s Guide

Example 20.4 Menu building.
 SUBROUTINE MENU(XPOS, YPOS)
C
 INTEGER IHIT(2), IMENL(4)
 REAL XPOL(4), YPOL(4)
 CHARACTER*8 CMENU(4)
 DATA XPOL/0.0, 0.1, 0.1, 0.0/
 DATA YPOL/0.0, 0.0, 0.05, 0.05/
 DATA CMENU/'Top item','Item 2','Third','Bottom'/
 DATA IMENL/ 8, 6, 5, 6/
C
C Create a segment containing 4 named polygons.
C The polygons are drawn using the background colour, with
C the perimeter drawn using the default colour.
C The input arguments give the upper left corner of the menu.
 CALL XLAT(XPOS, YPOS-YPOL(4))
 CALL BGNTRN
 CALL BGNPIC(1)
 CALL COTIND(0)
 CALL PRCIND(1)
 DO 1000 INAME=1,4
 CALL NAME(INAME)
 CALL POLY(XPOL, YPOL, 4, 1)
 CALL XLAT(0.0, -YPOL(4))
 1000 CONTINUE
 CALL ENDTRN
 CALL ENDPIC
C
C Add the menu text, without names, centred in each polygon.
 CALL BGNPIC(2)
 CALL CJUST(0.5, 0.25)
 DO 2000 IMENU=1,4
 CALL LINE(XPOL(2)/2.0, YPOL(4)/2.0, 0)
 CALL CHARC(CMENU(IMENU)(1:IMENL(IMENU)))
 CALL XLAT(0.0, -YPOL(4))
 2000 CONTINUE
 CALL IDEN
 CALL ENDPIC
C
C Make segment 1 detectable.
 CALL LPSPIC(1, 1)
 RETURN

C Main program
C
C Enter loop reading menu hits. If the menu is pointed at,
C the first element of the namestack will be 1 (segment id.),
C the second element will be 1 to 4, depending on which
C menu item was hit.
 1000 CONTINUE
 CALL REQHIT(3, 2, IHIT, IHLEN)
 IF (IHLEN .EQ. 2 .AND. IHIT(1) .EQ. 1) THEN
 CALL Branch(IHIT(2))
 GO TO 1000
 ENDIF

Scanning for menu hit in this example involves checking the 4 polygons only, the text
strings will not be scanned as they belong to an undetectable segment.

8th Edition PAGE 20-7

Pick Input Last changed: Apr 7, 1995

GPGS-F User’s Guide

Figure 20.1 Text menu (defined by Example 20.4).

20.5 Using Pseudo Segments
Names and detectability are also stored with elements within pseudo segments. If the
segments are to be used for display only, this will obviously have no significance.

However, pseudo segments may well be inserted into detectable retained segments. In that
case, the resulting namestack and detectability of elements will be a combination of the
state at the time a pseudo segment is inserted, and the values inserted.

If the detectability switch is set on/off within the pseudo segment, the following elements
will always/never be detectable, regardless of the state when inserted. Elements generated
before LPSCTL is called the first time, will be detectable if the switch is on at the time
the segment is inserted.

The names of inserted elements will be added to the namestack, but the segment identifier
will not.

Example 20.5 Pseudo segment inserted into detectable segments.

Code of ‘inserting’ routine

CALL BGNPIC(101)
CALL BGNNAM(10)
CALL LPSCTL(1)
CALL INSERT(1)

CALL BGNPIC(102)
CALL BGNNAM(20)
.
CALL BGNNAM(30)
CALL LPSCTL(0)
CALL INSERT(1)

Pseudo code Namestack of inserted elements

CALL BGNPIC(1)
CALL NAME(1)
CALL CHARC('Inherit')
CALL LPSCTL(1)
CALL NAME(2)
CALL CHARC('Always')
CALL LPSCTL(0)
CALL CHARC('Never')
CALL ENDPIC

101 10 1

101 10 2

Empty

Empty

102 20 30 2

Empty

Top item

Item 2

Third

Bottom

(xpos,ypos)

8th Edition PAGE 20-8

Pick Input Last changed: Apr 7, 1995

GPGS-F User’s Guide

8th Edition PAGE 21-1

Multi Window Devices Last changed: Mar 14, 1996

GPGS-F User’s Guide

Chapter 21
Multi Window Devices

With all routine descriptions so far, it has been assumed that each device has a single
image area, equal to the display surface. Today, the most commonly used graphic devices
are running some sort of window system, such as X11, allowing the user to work with
several image areas, i.e. windows, mapped onto the same display surface.

Existing GPGS-F application may be run without changes on such devices. The
traditional display surface is then represented by a single window. However, this will
obviously not utilize any of the advantages of window systems compared to conventional
graphic terminals.

To utilize (some of) the possibilities of modern window systems, GPGS-F has been
extended with special purpose routines to create and manipulate windows, which in this
respect is referred to as Device Windows (DWI). This must not be confused with the kind
of window described in Chapter 2, which is used to specify the area in user coordinate
space that is to be displayed.

In addition to allow graphics to be created in several device windows, these routines
simplify the use of GPGS-F in applications using the window system directly. A typical
example of this, is an application using X11 toolkit routines for defining and handling the
user interface, while GPGS-F is used as a output only system to create the graphics, either
in windows created by GPGS-F itself or in windows created by the application.

The maximum number of simultaneously active device windows is device dependent, and
may be requested by the DATDEV routine described on page 23-4. The windows are
referred to by a number ranging from 1 to the allowed maximum.

NITDEV (page 1-2) must be used to initialize multi window devices in the same way as
other devices, and will create a device window that is given number 1 (this is why ‘old’
applications may be run with such devices). Applications wanting to have full control of
the window management may still achieve this, as it is possible to specify through
DEVOPT (page 1-4) that the initial window is not to be displayed.

Note that drivers for multi window devices use the same colour table for all windows, i.e.
changing colour definitions (see page 11-2) will affect the primitives of all windows.

The first multi window driver developed, was the driver for the X11 window system. This
has to some degree influenced the selection of what routines were added to GPGS-F, as
well as some terms and references used throughout this chapter. The routines should
however have the same effect with other window systems.

8th Edition PAGE 21-2

Multi Window Devices Last changed: Mar 14, 1996

GPGS-F User’s Guide

21.1 Window to Viewport Mapping
As described in Chapter 2, user coordinates are mapped to device coordinates by defining
a window and a viewport. The viewport is specified in NDC coordinates, where the range
0.0 to 1.0, the default viewport, is defined to be the largest available square within the
display surface.

With multi window devices, the default viewport of a given window will be the largest
available square within that window. Thus, the physical size of a NDC unit will depend
on the window size.

GPGS-F will store just the last window and viewport definition, not one pair for each
window. If the application program uses different mappings for each window, the
application itself must keep track of the values used, and call WINDW and VPORT with
the actual values each time when switching between windows.

Figure 21.1 Window to viewport mapping.

21.2 Window Management
A device window is created (opened) by

where Idwi is the window number, ranging from 2 to the device dependent maximum.
Value 1 may not be used, as that window is created by NITDEV.

Ityp specifies the window type, and may take one of the following values:
1: A new top level window. Iref is not used.
2: A new subwindow (child), with GPGS-F window Iref as parent.
3: A new subwindow, with the application created window Iref as parent. Iref must

in this case be the internal window number used by the window system.
4: Connect to the application created window Iref, i.e. GPGS-F will not create a new

window, but will use window Iref for drawing.

Picture as defined in
user coordinates.

Mapped to two different windows
(with NDC coordinates shown).

1

1

1

1
1

1

1

1
1

1

1

10.0 1.4
0.0

1.0

0.0 1.0
0.0

1.2

CALL NITDWI (Idwi, Ityp, Iref)

8th Edition PAGE 21-3

Multi Window Devices Last changed: Mar 14, 1996

GPGS-F User’s Guide

When using a window system, there is always a window manager running. Normally,
when GPGS-F creates a top level window, the window manager will be notified, and
decorate the window as any other top level window, before it is displayed. Top level
windows may also be moved and/or resized by the operator, using a mouse or similar tool.
How window resizing affects the drawing process is described on page 21-10.

Subwindows, on the other hand, will not be available to the window manager, i.e. they
will not be decorated, and may not be manipulated by user actions.

The parent of a subwindow need not be a top level window, as GPGS-F does not limit the
number of subwindow levels.

DEVOPT is used to specify the size and position of new windows to be created. In
addition, options are defined for giving background colour, window and icon name,
border width and colour, and window start condition, i.e. whether the window is to be
displayed or just defined. The options recognized by a given device are described in
Appendix E, or in additional driver descriptions available.

A device window is cleared by

The CLRDEV routine (page 1-2) will clear all windows.

When a device window is no longer to be used, it may be released (deleted) by

The given window number Idwi may then be reused by NITDWI.

Window number 1 may not be released by RLSDWI, as this has to be open until the driver
is released by RLSDEV (page 1-2). RLSDEV will also release other windows that are
still open.

If Idwi specifies a window that was created by the application program, i.e. Ityp=4
through NITDWI, the window will not be deleted by RLSDWI, but it will no longer be
accessible through GPGS-F.

When a window is deleted, GPGS-F will check if it has any descendants, and if so, delete
these as well.

CLRDWI and RLSDWI will delete all retained segments belonging to the given window
and possible subwindows. More information on using retained segments with multi
window devices are given on page 21-10.

CALL CLRDWI (Idwi)

CALL RLSDWI (Idwi)

8th Edition PAGE 21-4

Multi Window Devices Last changed: Mar 14, 1996

GPGS-F User’s Guide

Example 21.1 Window creation.
C ****
C COMPLETE WORKING PROGRAM
C ****
C
C Define options for device driver 72 (X11).
C (in all figures in this chapter, 100 pixels is 1 cm)
 INTEGER I72OPT(11, 5)
 DATA I72OPT/0, 0, 100, 700, 500,1000, 11, 0, 0, 0, 3,
 + 0, 7, 550,1050, 150, 650, 11, 0, 0, 0, 3,
 + 0, 5, 200, 550, 100, 450, 1, 0, 0, 0, 2,
 + 0, 0, 200, 450, 100, 300, 1, 0, 0, 0, 2,
 + 0, 0, 50, 200, 20, 220, 1, 0, 0, 0, 1/
C
 CALL GPGS
C
C Set options for the device driver and window 1.
 CALL DEVOPT(I72OPT(1,1), 11, RDUM, 0, CDUM, 0)
 CALL DEVOPT(IDUM, 0, RDUM, 0, 'Window 1', -1)
C
C Initialize device, implies creation of window 1.
 CALL NITDEV(72)
C
C Specify character size and alignment, and draw a picture
C segment in window 1.
 CALL CSIZES(0.25, 0.5)
 CALL CJUST(0.5, 0.25)
 CALL DRWSEG(1)
C
C Set options for window 2, a new top level window.
C Create the window and draw a picture segment.
 CALL DEVOPT(I72OPT(1,2), 11, RDUM, 0, CDUM, 0)
 CALL DEVOPT(IDUM, 0, RDUM, 0, 'Window 2', -1)
 CALL NITDWI(2, 1, IDUM)
 CALL DRWSEG(2)
C
C Window 3, a subwindow of window 1.
 CALL DEVOPT(I72OPT(1,3), 11, RDUM, 0, CDUM, 0)
 CALL NITDWI(3, 2, 1)
 CALL DRWSEG(3)
C
C Window 4, a subwindow of window 2.
 CALL DEVOPT(I72OPT(1,4), 11, RDUM, 0, CDUM, 0)
 CALL NITDWI(4, 2, 2)
 CALL DRWSEG(4)
C
C Window 5, a subwindow of window 3.
 CALL DEVOPT(I72OPT(1,5), 11, RDUM, 0, CDUM, 0)
 CALL NITDWI(5, 2, 3)
 CALL DRWSEG(5)
C
C Wait for operator to push a key or mouse button, just to
C be able to inspect the result before releasing the driver.
 CALL REQLOC(201, XDUM, YDUM)
C
 CALL RLSDEV(72)
 END

8th Edition PAGE 21-5

Multi Window Devices Last changed: Mar 14, 1996

GPGS-F User’s Guide

 SUBROUTINE DRWSEG(ISEG)
C
C Draw a picture segment in current device window.
C
 REAL XPOS(4), YPOS(4)
 DATA XPOS/0.25, 0.75, 0.25, 0.75/
 DATA YPOS/0.25, 0.25, 0.75, 0.75/
C
 CALL BGNPIC(ISEG)
 CALL LINE(0.0, 0.5, 0)
 CALL LINE(1.0, 0.5, 1)
 CALL LINE(0.5, 0.0, 0)
 CALL LINE(0.5, 1.0, 1)
 DO 1000 IPOS=1,4
 CALL LINE(XPOS(IPOS), YPOS(IPOS), 0)
 CALL CHARI(ISEG, 1)
 1000 CONTINUE
 CALL ENDPIC
 RETURN
 END

Figure 21.2 Window creation (result of Example 21.1).

Although there may be several open device windows, output is generated for just one
window, the current output window, at a time. This window is selected by

where Idwi is an existing window. NITDWI implies SELDWI, i.e. the window that will
receive output is the one selected by the last NITDWI or SELDWI.

If the current window is released by RLSDWI, window number 1 is set to current, no
matter if it is visible or not.

1

1

1

1

Window 1

3

3

3

3
5

5

5

5

2

2

2

2

Window 2

4

4

4

4

CALL SELDWI (Idwi)

8th Edition PAGE 21-6

Multi Window Devices Last changed: Mar 14, 1996

GPGS-F User’s Guide

21.3 Window Operations
GPGS-F allows several operations to be applied to device windows. For top level
windows, the same operations may normally be performed by the operator through the
window manager, while subwindows may only be manipulated by program control.

The visibility of a device window is controlled by

where Isw=0 means invisible (‘unmapped’) and Isw=1 means visible (‘mapped’).

If a top level window is made invisible, it will normally be made into an icon.

GPGS-F does not check if the current window is visible when generating output. Whether
the generated primitives will appear when the window is later made visible depends on
the window system.

The stacking order among siblings (=windows with the same parent) may be changed by

where Isw=1 will move window Idwi to the front of all its siblings, and Isw=0 will move
it behind all its siblings.

When a new window is created, it is always put in front of its siblings.

Figure 21.3 Changing stacking order.

CALL VISDWI (Idwi, Isw)

CALL POPDWI (Idwi, Isw)

2

2

2

2

1

1

1

1
3

3

3

3

4

4

4

4

1

1

1

1
4

4

4

4 3

3

3

3
2

2

2

2

Before AfterCALL POPDWI(1, 0)
CALL POPDWI(3, 1)

Window 3 is not moved in front of window 2, as they are not siblings.

8th Edition PAGE 21-7

Multi Window Devices Last changed: Mar 14, 1996

GPGS-F User’s Guide

The position of a window may be changed by

Ixpos and Iypos specify the distance between a given corner of the window and the
corresponding corner of its parent window. The unit used to specify this distance is
selected by Imod. If Imod is 0, the distance is given as a percentage of the parent window
size. If Imod is 1, the distance is given as pixels.

Icorn specifies which corner the distance is specified for (1=lower left, 2=lower right,
3=upper right, 4=upper left).

When a percentage value are used, GPGS-F will compute the distance in pixels based on
the largest possible square of the parent window.

GPGS-F does not limit a subwindow to be within its parent. Whether the graphics in
invisible parts of a window become visible when the window is later moved into its
parent, or the parent is enlarged, depends on the properties of the window system (see
section 21.6 on page 21-10).

Note that the parent of top level windows is the root window, i.e. the complete display
surface.

Figure 21.4 Moving windows.

CALL MOVDWI (Idwi, Ixpos, Iypos, Imod, Icorn)

1

1

1

1
3

3

3

3

2

2

2

2
4

4

4

4

1

1

1

1
3

3

3

3

2

2

2

2
4

4

4

4

Before After
CALL MOVDWI(2, 25, 25, 1, 4)
CALL MOVDWI(3, 150, 100, 1, 2)
CALL MOVDWI(4, 125, 75, 1, 1)

8th Edition PAGE 21-8

Multi Window Devices Last changed: Mar 14, 1996

GPGS-F User’s Guide

The size of a window is changed by

where the width (Iwid) and height (Ihei) may also be specified as a percentage of the
parent window (Imod=0) or as pixels (Imod=1). When a percentage value is given, the
size will be computed the same way as with MOVDWI, i.e. based on the largest possible
square in the parent window.

The position of the upper left corner, relative to its parent, will not move when a window
is resized. The same is true for subwindows of the changed window, and also the graphics
within the window.

Note that the graphics within the window is not resized with the window. How to adjust
the graphics to the new size is discussed in section 21.6 on page 21-10.

Figure 21.5 Resizing windows.

The last window operation available through GPGS-F, is to reparent a window, i.e. move
a window from one parent to another. This is done by

where Iref is the GPGS-F number of the new parent if Ireftp=0, or the internal window
number if Ireftp=1. Thus, a window with a GPGS-F window as parent, may well be
changed to have an application generated window as parent, and vice versa.

When a window is reparented, the position of the upper left corner will be the same in the
new parent as in the old one. If the new parent is smaller than the old one, the reparented
window may then be partly or completely invisible.

CALL RSZDWI (Idwi, Iwid, Ihei, Imod)

1

1

1

1
2

2

2

2
3

3

3

3
4

4

4

4

1

1

1

1
3

3

3

3

2

2

2

2
4

4

4

4

Before AfterCALL RSZDWI(2, 300, 250, 1)
CALL RSZDWI(3, 275, 350, 1)

CALL RPADWI (Idwi, Iref, Ireftp)

8th Edition PAGE 21-9

Multi Window Devices Last changed: Mar 14, 1996

GPGS-F User’s Guide

If the window that is reparented contains subwindows, these will of course be moved with
the window.

Note! A top level window may not be reparented, and a subwindow may not be converted
to a top level window by giving the root window as the new parent.

Figure 21.6 Reparenting a window.

21.4 Window Numbers
As stated at the start of this chapter, device windows are referred to by a number from 1
and up. This numbering is internal to GPGS-F, and has no relevance to the window
identifiers used by the window system running.

When the application program uses window system routines directly, the application may
however need to know the internal window number of a window generated by GPGS-F.
This may be requested by

where Idwi is the GPGS-F window number and Iwsid is the returned internal number. If
GPGS-F is not able to find the internal number, Iwsid will be set to a value that is not a
legal window identifier.

(The Ichg argument is described on page 21-10).

1

1

1

1
2

2

2

2
4

4

4

4 3

3

3

3

1

1

1

1
2

2

2

2
3

3

3

3
4

4

4

4

Before AfterCALL RPADWI(4, 3, 0)

CALL INQDWI (Idwi, Iwsid, Ichg)

8th Edition PAGE 21-10

Multi Window Devices Last changed: Mar 14, 1996

GPGS-F User’s Guide

21.5 Retained Segments
Retained segments are handled much the same way by multi window devices as by other
devices. The only difference is that the segments belong to a given device window in
addition to the device they were created for.

The window number is however not stored with the segment identifier, as the device
number is. Thus, the same segment identifier may not be used by two segments belonging
to the same device, even if they belong to two different device windows.

When a retained segment is created, it will be drawn in the current device window. A
segment may however be deleted (by DELPIC, page 16-4), and its attributes changed
(Chapter 17), without first selecting the window the segment belongs to.

The REDRAW routine will, as described on page 16-4, redraw all visible segments
belonging to the current device. With multi window devices, this means that all segments
in all windows are redrawn.

It is also possible to redraw the segments belonging to a single window by

where Idwi is the window to redraw.

21.6 Updating Window Contents
If a window containing GPGS-F graphics is resized, either by RSZDWI or an operator
action, GPGS-F will not do any automatic redrawing, and if adding more graphics to the
window, the ‘old’ size will still be used when mapping user coordinates to device
coordinates.

This ‘old’ size is the window size as it was when the window was last empty. The actual
window size is recorded by GPGS-F when BGNPIC is called and the current output
window is empty, or when the segments of the window is redrawn by RDRDWI or
REDRAW.

As the application program itself must handle redrawing, it is possible to ask GPGS-F
whether the window size is changed since it was last empty.

will return 1 through Ichg if the window size is changed, 0 if not.

If the window is empty when INQDWI is called, 0 is returned true Ichg.

(The Iwsid argument was described on page 21-9).

CALL RDRDWI (Idwi)

CALL INQDWI (Idwi, Iwsid, Ichg)

8th Edition PAGE 21-11

Multi Window Devices Last changed: Mar 14, 1996

GPGS-F User’s Guide

Example 21.2 Updating window contents.
 SUBROUTINE CHKDWI(IDWLST, ILTH)
 INTEGER IDWLST(ILTH)
C
C A (user supplied) routine to check if any of the device
C windows in use need redrawing.
C
C It is assumed that all segments are retained.
C
C Input:
C IDWLST: List of length ILTH, containing a 1 for each
C window that is currently in use.
C
 DO 1000 IDWI=1,ILTH
 IF (IDWLST(IDWI) .EQ. 1) THEN
 CALL INQDWI(IDWI, IDUM, ICHG)
 IF (ICHG .EQ. 1) THEN
 CALL RDRDWI(IDWI)
 ENDIF
 ENDIF
 1000 CONTINUE
C
 RETURN
 END

There are also additional cases where a window needs redrawing, such as when an
invisible window is made visible by VISDWI (page 21-6), or when obscured parts of a
window is exposed.

With some window systems, redrawing in such cases are taken care of by the window
system itself (with X11 there is a window property called Backing_Store that indicates
whether a window should be automatically redrawn or not).

If a window containing graphics is shrunk, parts of the graphics may fall outside the new
size (as in Figure 21.5 on page 21-8). If the window is later resized to its original size or
larger, these cut-off parts will not become visible again, even if the window system
handles window redrawing. Using GPGS-F is then the only way to redraw the picture.

GPGS-F does not provide any routines that indicates whether redrawing is necessary
because of other reasons than resizing. Thus, if redrawing is not done by the window
system, the application itself must include methods for detecting such events.

8th Edition PAGE 21-12

Multi Window Devices Last changed: Mar 14, 1996

GPGS-F User’s Guide

21.7 Requesting Window Size
The size of a window may be requested through DATDEV (page 23-4), which returns
data for the current output window, or by

which returns data for window Idwi. Farr is defined as for DATDEV, but the maximum
length is 4, i.e. maximum viewport size in X, Y and Z, and default viewport size in meters.
Iarr will return the position of the left, right, bottom and top window borders in pixels,
measured from the lower left corner of the parent window.

Lthi and Lthf gives the number of values to return through Iarr and Farr.

When DATDEV or DATDWI is called, GPGS-F will return the window size as it was
when the window was last empty, i.e. not necessarily the actual size (see previous
section). If the window is currently empty, the actual size will however always be
returned.

Example 21.3 Requesting current window size.

The window as originally defined.

 CALL RSZDWI(3, 200, 250, 1)
 CALL DATDWI(3, IARR, 4, RDUM, 0)

will return [100, 450, 100, 400] trough IARR,
i.e. the ‘old’ size.

 CALL RDRDWI(3)
 CALL DATDWI(3, IARR, 4, RDUM, 0)

will return [100, 300, 100, 350] trough IARR.

CALL DATDWI (Idwi, Iarr(1), Lthi, Farr(1), Lthf)

3

3

3

3

3

3

3

3

3

3

3

3

8th Edition PAGE 21-13

Multi Window Devices Last changed: Mar 14, 1996

GPGS-F User’s Guide

21.8 Interaction
All interaction facilities described in Chapter 8, as well as the pick input method
described in Chapter 20, may be used with multi window devices.

By default, input is read from the current output window. This is however not very
convenient, as applications using multiple windows are commonly designed to receive
input from some windows, while other windows are used for output only.

To give the application programmer full control of which windows are to be used for input
and not, an input mode may be set for each window, by

where Isw=1 means that window Idwi may receive input, and Isw=0 means that input no
longer is possible. If Idwi i set to 0, Isw=1 means that all windows may receive input,
while Isw=0 means that no windows may receive input.

Note that if all windows are set to receive input, this applies to the currently open
windows. If a new window is created, this has to be explicitly set to receive input by
calling INPDWI once more.

If Idwi is set to -1, the default condition is reset.

If more than one window is defined to receive input, the user must of course have a
method for finding what window actually received the input. Instead of defining a
complete new set of input routines with an extra argument, a single utility routine has been
defined as

which will return, through Idwi, the number of the window in which the last input
operation was performed. This routine should be called immediately after the actual input
routine is called.

Following a SMPLOC/SMPHIT call (page 8-4), 0 will be returned through Idwi if the
cursor was not in a GPGS-F window, or in a GPGS-F window that was not set up to
receive input by INPDWI.

21.9 Background Device
Generally, all GPGS-F routines will give the same effect with multi window devices as
with traditional graphic terminals.

When using a background device (described in Chapter 19), there is however one
exception. The BACDRW routine will for a traditional driver copy all visible segments
on the screen to the specified background device. Used with multi window drivers,
BACDRW will copy the visible segments in the current window only.

CALL INPDWI (Idwi, Isw)

CALL READWI (Idwi)

8th Edition PAGE 21-14

Multi Window Devices Last changed: Mar 14, 1996

GPGS-F User’s Guide

8th Edition PAGE 22-1

Hidden Lines and Surfaces Removal Last changed: Apr 7, 1995

GPGS-F User’s Guide

Chapter 22
Hidden Lines and Surfaces Removal

When drawing 3D objects using the basic routines of GPGS-F, the resulting drawing will
display all primitives generated for the object. In some cases this is what the user wants,
but in most cases the preferred result is one that does not display primitives that is hidden
by primitives in front of it.

To make this possible, GPGS-F has been extended with a module for performing hidden
lines and surfaces removal (HLHS module for short). A surface is in this connection
equivalent to a polygon generated by one of the GPGS-F polygon routines described in
Chapter 12. It is not possible to define surfaces by other means.

Removal of hidden lines means that parts of lines that are hidden by surfaces are removed
(in some other systems, the term is used when the visual parts of polygon edges are
displayed as lines).

When using the HLHS module, a copy of the polygons and lines generated are stored.
That is, the primitives are still passed to the active device driver, in the same way as when
the module is not used (more on this on page 22-6). Upon request from the user, the result
of the HLHS calculation is inserted into the currently open picture segment.

Not only lines defined by the user are stored, but also lines generated by internal GPGS-F
routines. That is, software circles and characters are stored as a number of lines, and
invisible parts are removed when displayed. Hardware characters, circles and markers are
not stored.

Figure 22.1 Hidden lines removal.

Software text partly in front of, partly behind the polygon.
Each line is checked for visibility.

8th Edition PAGE 22-2

Hidden Lines and Surfaces Removal Last changed: Apr 7, 1995

GPGS-F User’s Guide

As visible parts of lines are drawn, original lines may be split into several line segments.
If using GPGS-F linetypes 3 to 5, this means that the line pattern is not maintained as each
line segment will start a new pattern. To fully control the linepattern, user defined
linetypes (described in Chapter 9) should be used.

The HLHS module of GPGS-F is capable of handling all polygon shapes, including
polygons with holes. The polygons must however be plane.

The module is very general in that it handles cyclic overlap (Figure 22.2) and intersecting
polygons (Figure 22.4), in addition to ‘normal’ overlap.

Figure 22.2 Cyclic overlap.

22.1 HLHS Module Control
The HLHS module is initialized by

which will (re)set the module to its defined initial state.

NITHID will set the storage switch of the module on, i.e. copies of all polygons and lines
subsequently created will be stored by the HLHS module.

The state of the storing switch is controlled by

where Isw=0 will turn the switch off, Isw=1 will turn it on.

Changing the state of the storing switch will not affect the polygons and lines already
stored by the HLHS module.

CALL NITHID

CALL HIDCTL (Isw)

8th Edition PAGE 22-3

Hidden Lines and Surfaces Removal Last changed: Apr 7, 1995

GPGS-F User’s Guide

22.2 Inserting the Result
When all polygons and lines that are to take part in the HLHS calculation are stored, the
result is inserted into the currently open segment by

where Iopts is an option array of length Length. With the current version 3 options are
defined.

Iopts(1) controls what to draw, and the drawing sequence.
0: Draw polygons front to back, and draw all lines afterwards (default).
1: Draw polygons back to front, and draw all lines afterwards.
2: Draw polygons and lines back to front with no HLHS removal.

This may be used when all polygons are solid or patterned, and it is known that
there is no overlap in Z direction between the polygons, and no lines passes
through polygons. The reason why the result will be correct is the fact that the
polygons when drawn will obscure what has previously been drawn (assuming a
raster device is used).

10-12: As 0-2, except that only the polygons are drawn, not the lines.
98: Draw only lines, and remove the lines from storage afterwards.
99: Draw only lines, and leave the lines in storage.

Drawing polygons back to front will be slightly slower than front to back, but with colour
or grey scale raster devices, the result will in most cases look more correct (as shown by
Figure 22.3). With pen plotters, or if not using colours, the visual effect will be the same.

Figure 22.3 Drawing sequence.

Iopts(1)=1
Polygons drawn back to front.

Iopts(1)=0
Polygons drawn front to back. The
perimeter of the front polygon is
partly erased when drawing the
polygon behind it.

CALL INSHID (Iopts(1), Length)

8th Edition PAGE 22-4

Hidden Lines and Surfaces Removal Last changed: Apr 7, 1995

GPGS-F User’s Guide

Iopts(2) controls what polygon edges to draw.
0: Draw original edges only (default).
1: Draw original edges, and intersection lines between polygons.
2: Draw all polygon edges, including new edges resulting from the HLHS

calculation.

This option applies to the edges of hollow polygons, and the edges of filled polygons if
perimeter drawing has been selected by PRCIND (see page 12-4).

Figure 22.4 Drawing polygon edges.

PRCIND should always be used if the edges of filled polygons are to be drawn. Drawing
the same polygon twice, first as a filled polygon and then as a hollow polygon will not be
correct, as only one of the two will be visible, the other one will be completely hidden.

Iopts(3) may be used to control how filled polygons are drawn on line drawing devices.
0: Just pass the polygons to the device, and hope for the best (default).

> 0: Draw the perimeter of solid and patterned polygons.
1: Use the interior colour index for the perimeter.
2; Use the perimeter colour index if set, if not, use the interior colour index.
3: Use colour index 1 for drawing all perimeters.

The interior colour index means the current index at the time a polygon was created.

As INSHID is called to display the result of the HLHS calculation, the data will not be
deleted from the module. It is possible to add new polygons and lines at a later stage, and
call INSHID again to display a new result. With the current version, it is not possible to
delete individual polygons and/or lines from the module.

If several independent drawings are to be made by the same application program, NITHID
must be used to reset the HLHS module to its initial state.

Iopts(2)=0
Only original edges drawn.

Iopts(2)=1
The intersection line between the
two polygons is drawn in addition.

8th Edition PAGE 22-5

Hidden Lines and Surfaces Removal Last changed: Apr 7, 1995

GPGS-F User’s Guide

Example 22.1 Basic use of the HLHS module
C
C Initialize a device and the HLHS module.
C
 CALL GPGS
 CALL NITDEV(idev)
 CALL NITHID
C
C Draw some polygons (and maybe lines).
C
 CALL BGNPIC(1)
 CALL User-routine-to-draw
 CALL ENDPIC
C
C Clear the screen, or in the case of a multi window device,
C create a new window.
C
 IF (Multi_Window_Device) THEN
 CALL NITDWI(2, 1, 0)
 ELSE
 CALL CLRDEV(idev, 0)
 ENDIF
C
C Draw some explanatory text. This is not to be part
C of the HLHS calculation, so storing is turned off.
C
 CALL HIDCTL(0)
 CALL BGNPIC(2)
 CALL User-routine-to-draw-text
C
C Then insert the result of the HLHS calculation.
C
 CALL INSHID(idum, 0)
 CALL ENDPIC
 CALL RLSDEV(idev)
 END

8th Edition PAGE 22-6

Hidden Lines and Surfaces Removal Last changed: Apr 7, 1995

GPGS-F User’s Guide

22.3 Using the Dummy Device
As mentioned at the start of this chapter, what is stored by the HLHS module is a copy of
the polygons and lines generated.

The polygons and lines are at the same time sent to the current device driver and
displayed. In most cases, however, this display is of no interest. To suppress displaying
the input data, GPGS-F driver number 1, the dummy device, may be used during the
storing stage of the application program.

Example 22.2 Using the dummy device with the HLHS module.
C
C Initialize the dummy device and the HLHS module
C
 CALL GPGS
 CALL NITDEV(1)
 CALL NITHID
C
C Draw some polygons (and maybe lines).
C
 CALL BGNPIC(1)
 CALL User-routine-to-draw
 CALL ENDPIC
C
C Initialize the device to use, and insert
C the result of the HLHS calculation.
C
 CALL NITDEV(idev)
 CALL BGNPIC(2)
 CALL INSHID(idum,0)
 CALL ENDPIC
C
C Add some more polygons to the HLHS module.
C
 CALL SELDEV(1)
 CALL BGNPIC(3)
 CALL User-routine-to-draw
 CALL ENDPIC
C
C Clear the display, and insert the new result of
C the HLHS calculation.
C
 CALL SELDEV(idev)
 CALL CLRDEV(idev, 0)
 CALL BGNPIC(4)
 CALL INSHID(idum, 0)
 CALL ENDPIC

8th Edition PAGE 22-7

Hidden Lines and Surfaces Removal Last changed: Apr 7, 1995

GPGS-F User’s Guide

22.4 Front- and Back-Facing Polygons
When a polygon (copy) is passed to the HLHS module, a front and back face is defined.
The reason for this is that the application program may choose to store only the polygons
whose front face is towards the viewer (front-facing polygons).

The front face of a polygon is defined as follows:
A local right-hand coordinate system is set up. One of the edges is defined to be
the X axis, with vertex n as startpoint and vertex n+1 as endpoint.
The Y axis is in the polygon plane, with the positive direction towards the interior
of the polygon.
The front face of the polygon is then defined to be the face that is seen from the
positive part of the Z axis.

Following from this, a front-facing polygon will have its local Z axis pointing from the
display surface towards the viewer, while a back-facing polygon will have its local Z axis
pointing ‘into’ the display surface. Thus, if the vertices are defined in the opposite
sequence, the front and back face will be swapped.

Figure 22.5 Front and back face of polygons.

In many cases, especially when the polygons define solids, it is known that back-facing
polygons will in no case be visible. These polygons need therefore not take part in the
HLHS calculation, and the CPU time needed will be reduced.

Whether back-facing polygons are to be stored is selected by

where Isw=0 means back-facing polygons will not be stored, 1 means they will be stored.

The default value, set by NITHID, is 0.

Front

face

Back

face

1

2

34

5

1

2

3 4

5

The numbers show the sequence of the vertices as supplied
to the polygon drawing routine.

CALL BFACEV (Isw)

8th Edition PAGE 22-8

Hidden Lines and Surfaces Removal Last changed: Apr 7, 1995

GPGS-F User’s Guide

22.5 Polygon Attributes
As the result of HLHS removal is drawn, the polygons are to have the same attributes as
when generated, i.e. the attributes must be stored as well. The table below shows what
attributes are stored with the different polygon types. For a detailed description of
polygon types and attributes, refer to Chapter 12.

Table 22.1 Polygon attributes stored by the HLHS module.

22.6 Limitations
The current version of the HLHS module stores the lines and polygons in internal
GPGS-F arrays. As the size of these arrays are defined at compilation time in Fortran,
there is a limit to the number of lines and polygons that may be stored.

The array sizes are installation dependent (see Appendix A), i.e. they may be changed by
the site responsible for GPGS-F. The current setting may be requested by the DATHID
routine described on page 23-7.

Polygon type Attributes stored

Solid The colour index of the interior, and perimeter colour index if
set (see the PRCIND routine, page 12-4).

Hollow The colour index.

Hatched

If low quality rendering is selected (see the SOFPOL routine,
page 12-6), the hatch index.

If medium or high quality rendering, the hatch angle and
distance.

In both cases, the colour index of the hatch lines, and of the
perimeter if set.

Patterned

Pattern index, and perimeter colour index if set.

If user defined patterns are used, this means that if the pattern
is redefined between polygon generation and display of the
HLHS result, the new definition will be used.

8th Edition PAGE 23-1

Fetching System Status Data Last changed: Jan 18, 1996

GPGS-F User’s Guide

Chapter 23
Fetching System Status Data

GPGS-F contains a family of routines returning various system status information to the
application program. These are most useful when writing utility routines that are to be
used by several applications. By inquiring GPGS-F status information in such a utility
routine, it is possible to make the routine itself quite independent of the calling routine.

An example of such a utility routine is one that is to write a text in a given size and with
a given font. As the routine returns control to the calling routine, all settings should be as
when the routine was entered. To make this possible the routine must know the current
window and viewport setting, current character size and character font. All this
information is available through inquiry routines, making it unnecessary for the calling
routine to pass it through the call.

This chapter describes the routines returning GPGS-F system status information. If
relevant, the routine(s) setting the status is given with the description. If the setting routine
has not yet been used, the system default values are returned. Note that there are cases
where the returned value will not be the last one set, as GPGS-F may have changed the
value. An example of this is the current colour index, which will always be reset to its
default value when a new picture segment is opened.

When values are returned through arrays, the user must in most cases specify the number
of values to be returned. It is not possible to specify the array index of the first element,
i.e. if the user wants N values to be returned, array elements 1 through N are always
returned.

In a few cases, array elements are marked as Not Used. The reason why these are not
deleted, is that the array ordering must be kept for compatibility reasons.

Device number

Idev: Device number of the current active device driver, selected by NITDEV or
SELDEV (page 1-2). If there is no active driver, zero is returned.

Picture segment number

Ident: Identifier of the current open picture segment, set by BGNPIC (page 3-1). If
there is no open picture segment, zero is returned.

CALL DATDNO (Idev)

CALL DATPNO (Ident)

8th Edition PAGE 23-2

Fetching System Status Data Last changed: Jan 18, 1996

GPGS-F User’s Guide

Window

Warr3: Current window limits, set by WINDW / WINDW3 (page 2-2). Warr3 must
be a 6 element array as the Z limits are always returned, even if the user has
set a 2 dimensional window.
The window limits are returned in the same sequence as set by WINDW /
WINDW3, i.e. [Xlow, Xhigh, Ylow, Yhigh (,Zlow, Zhigh)].

Viewport

Varr3: Current viewport limits, set by VPORT / VPORT3 (page 2-3).
The same rules apply as for DATWIN described above.

Current position

Xusr, Yusr, Zusr: Current position in user coordinates.

Xpos, Ypos, Zpos: Current position transformed by the system transformation matrix.

Picture element attributes

The number of values to be returned must be specified by Lthi (number of integers) and
Lthf (number of real numbers).

Iarr(1): Blinking status, set by BLICTL (page 13-2). 0 = disabled, 1 = enabled.

Iarr(2): Not Used.

Iarr(3): Depth modulation, set by DEPCTL (page 13-2). 0 = disabled, 1 = enabled.

Iarr(4): Element detectability, set by LPSCTL (page 20-3). 0 = disabled, 1 = enabled.

Iarr(5): Current colour index, set by COTIND (page 11-2).

Farr(1): Not Used.

Farr(2): Linewidth scaling factor, set by LINWID (page 13-1).

CALL DATWIN (Warr3(1))

CALL DATVP (Varr3(1))

CALL DATUSR (Xusr, Yusr, Zusr)

CALL DATPOS (Xpos, Ypos, Zpos)

CALL DATATR (Iarr(1), Lthi, Farr(1), Lthf)

8th Edition PAGE 23-3

Fetching System Status Data Last changed: Jan 18, 1996

GPGS-F User’s Guide

Clipping mode

Iswtch: Current clipping mode, set by CLICTL (page 2-4).
0 = clipping off, 1 = clipping on.

Transformation mode

Iswtch: Current transformation mode, set by MODTRN (page 6-16).
0 = space mode, 1 = picture mode.

Circle generation mode

Imod: Circle generation mode, set by SOFCIR (page 4-10).
0: Hardware generation selected.
1: Software generation selected, with number of line segments to

approximate a circle to be computed by GPGS-F.
>1: Software generation selected. Imod returns the number of line segments

to approximate a circle, as specified by the user.

Dist: Circle approximation value, set by CIRAPR (page 4-10).

Character attributes

The number of values to be returned must be specified by Lthi (number of integers) and
Lthf (number of real numbers).

Iarr(1): Character generation mode, set by SOFCHA (page 7-6).
0: Hardware generation selected.
1: Software generation selected.

Iarr(2): System escape character in A1 format, set by CESCAP (page 7-2).

Iarr(3): Character language, set by CLANG (page 7-10).

Iarr(4): Character font, set by CFONT (page 7-8).

Farr(1): Character space dimension, X direction. Set by CSIZES (page 7-4).

Farr(2): Character space dimension, Y direction. Set by CSIZES.

Farr(3): Character box fraction, X direction. Set by CSIZEL (page 7-4).

CALL DATCLI (Iswtch)

CALL SAVMOD (Iswtch)

CALL DATCIR (Imod, Dist)

CALL DATCHR (Iarr(1), Lthi, Farr(1), Lthf)

8th Edition PAGE 23-4

Fetching System Status Data Last changed: Jan 18, 1996

GPGS-F User’s Guide

Farr(4): Character box fraction, Y direction. Set by CSIZEL.

Farr(5): Sine of character rotation angle. Computed by GPGS-F.

Farr(6): Cosine of character rotation angle. Computed by GPGS-F.

Farr(7): Character shearing factor. Set by CSHEA (page 7-5).

Farr(8): Character rotation angle in radians. Set by CROTA(D) (page 7-6).

Farr(9): Character alignment factor, X direction. Set by CJUST (page 7-7).

Farr(10): Character alignment factor, Y direction. Set by CJUST.

Marker size

Size: Marker size in NDC. Set by MSIZE (page 4-12).
If MSIZE has not been called, 0.0 is returned.

Device data

The number of values to be returned must be specified by Lthi (number of integers) and
Lthf (number of real numbers).

The data are returned for the current active device driver.

Farr(1): Maximum available viewport, X direction (NDC).

Farr(2): Maximum available viewport, Y direction (NDC).

Farr(3): Maximum available viewport, Z direction (NDC). Two dimensional devices
will return a value of 10000.0

Farr(4): Default viewport size in meters.

Farr(5): Spotsize in X direction (NDC), i.e. the inverse of the number of pixels within
the default viewport.

Farr(6): Maximum line thickness in millimeters (approximate value).

Farr(7): Spotsize in Y direction (NDC). Will be equal to Farr(5) if device pixels are
square.

Iarr(1): Not used.

Iarr(2): Number of keyboard input devices (input tool 2). Always 0 or 1.

Iarr(3): Maximum length of namestack for pick input device (input tool 3), including
the segment identifier. 0 means tool not supported, 1 means only segment
name etc.

Iarr(4): Number of valuator input devices (input tools 101 to 199).

Iarr(5): Number of locator input devices (input tools 201 to 299).

CALL DATMAR (Size)

CALL DATDEV (Iarr(1), Lthi, Farr(1), Lthf)

8th Edition PAGE 23-5

Fetching System Status Data Last changed: Jan 18, 1996

GPGS-F User’s Guide

Iarr(6): Not used.

Iarr(7): Number of button (function key) input devices (input tools 401 to 499).

Iarr(8): Storage method used for retained segments.
0: The device does not support retained segments.

All printers/plotters return this value.
1: All segments must be retained, with storage in GPGS-F buffers, i.e.

RETAIN (page 16-1) and NITBUF (page 14-3) must be used.
2: Optional retained segment, selected by RETAIN. Segments are stored by

the device itself, i.e. NITBUF is not necessary.
3: Optional retained segments, selected by RETAIN. Segments are stored in

GPGS-F buffers, defined by NITBUF, while segment operations are
handled by the device or driver.

4: As 3, except that segment operations are handled by the SIMU driver.
This is the most common value returned by graphic terminals.

Iarr(9): Image transformation (Chapter 18) capabilities.
0: No image transformations available.
1: 2D translation.
2: All 2D transformations except shearing.
3: All 2D transformations.
4: All 3D transformations except perspective.
5: Full 4×4 transformation matrix.

Iarr(10): Hardware (or driver) clipping.
0: No clipping, i.e. primitives specified outside the display surface may

wrap around.
1: Clipping at display surface boundaries.
2: Clipping at viewport boundaries.

Iarr(11): Default background colour. 0 = black (dark), 1 = white (light)
Not relevant for devices with static or dynamic colour table (see Iarr(19)).

Iarr(12): Default foreground (drawing) colour. 0 = black (dark), 1 = white (light).
Not relevant for devices with static or dynamic colour table.

Iarr(13): Hardware text capability. Returned as a sum of size and rotation.
Size:
0: No hardware text available.
1: One size only.
2: Limited number of different sizes.
3: Any size available.

Rotation:
10: Horizontal text only.
20: 4 directions (rotation angle 0, 90, 180 and 270 degrees).
30: Any rotation available.

Iarr(14): Number of hardware fonts available.

8th Edition PAGE 23-6

Fetching System Status Data Last changed: Jan 18, 1996

GPGS-F User’s Guide

Iarr(15): Hardware circle capability.
0: No hardware circles available.
1: 2D circles.
2: 3D circles.

Iarr(16): Device type.
0: Vector terminal.
1: Vector plotter.
2: Raster terminal.
3: Raster plotter.
4: Device independent file format.
5: Other, e.g. pseudo.

Iarr(17): Colour / monochrome device.
0 = colour, 1 = monochrome.

Iarr(18): Maximum colour index (=length of colour table excluding index 0).
See also Iarr(27).

Iarr(19): Colour table type (see page 11-1 for details).
0: Fixed (no modification possible).
1: Static (may be modified, will not affect previously drawn primitives).
2: Dynamic. See also Iarr(27).

Iarr(20): Default polygon texture type (see page 12-5).
0: No texture available.
1: Hatch.
2: Pattern.

Iarr(21): Number of user definable patterns available (see page 12-7).

Iarr(22): Number of user definable hatch styles available (see page 12-8).

Iarr(23): Pixel arrays capability (see page 12-12).
0: Pixel arrays not available.
1: Pixel arrays may be drawn.
2: Pixel arrays may be drawn and inquired.

Iarr(24): Number of picture segment priorities supported (see page 17-3).

Iarr(25): Automatic update when changing segment priority.
0: No, REDRAW (page 16-4) or RDRDWI (page 21-10) must be used.
1: Yes.

Iarr(26): Number of available device windows (Chapter 21).

Iarr(27): For dynamic colour tables, the highest colour index that may be dynamically
changed. Will be equal to or lower than Iarr(18).
If no colour indices may be dynamically changed (will be the case if all
colours have been allocated by other applications), a value of -1 will be
returned.
If zero is returned, all entries may be changed.

8th Edition PAGE 23-7

Fetching System Status Data Last changed: Jan 18, 1996

GPGS-F User’s Guide

Installation dependent parameters for polygon drawing

Installation dependant parameters are described in Appendix A.

Ipolsz: Maximum number of polygon vertices. Parameter MPOLSZ.

Icros: Maximum number of crossings between an arbitrary line and a polygon, used
for software hatching and pattern filling. Parameter MPCROS.

Ipatsz: Maximum number of colour cells in user defined patterns. Parameter
MRPSIZ.

Fortran unit numbers used by GPGS-F

Ifontu: Fortran unit number used when reading font data. Either installation
dependent parameter MFUNIT, or the value set by SETFNU (page 7-9).

Ierru: Fortran unit number used when reading error information. Either installation
dependent parameter MEUNIT, or the value set by SETFNU (page 24-4).

HLHS module limits and utilization

The number of values to be returned must be specified by Lthi.

Installation dependant parameters are described in Appendix A.

Iarr(1): Maximum number of polygons that may be stored by the module. Installation
dependent parameter MXUPOL.

Iarr(2): Maximum number of vertices of a polygon to be stored. Parameter MXUPTS.

Iarr(3): Expected average number of vertices of polygons to be stored. The total
number of vertices that may be stored is computed as this value multiplied
with Iarr(1). Parameter MAUPTS.

Iarr(4): Maximum number of lines that may be stored. Parameter MXULIN.

Iarr(5): Number of polygons stored so far.

Iarr(6): Number of vertices stored so far.

Iarr(7): Number of lines stored so far.

CALL DATPAR (Ipolsz, Icros, Ipatsz)

CALL DATFNU (Ifontu, Ierru)

CALL DATHID (Iarr(1), Lthi)

8th Edition PAGE 23-8

Fetching System Status Data Last changed: Jan 18, 1996

GPGS-F User’s Guide

Primary segment storage

The number of values to be returned must be specified by Lthi.

The values refer to the current buffer, selected by NITBUF or SELBUF (page 14-3)

Iarr(1): Free space in buffer, in integer words.

Iarr(2): Minimum free space in buffer since DATBUF was last called. If no segments
have been deleted from the buffer, this will be the same as Iarr(1). If segments
have been deleted, the value gives the free space as it was before garbage
collection.

Iarr(3): Total space in buffer, as specified by NITBUF.

Picture library

The number of values to be returned must be specified by Lthi.

The values refer to the current library, selected by NITLIB or SELLIB (page 14-5).

Iarr(1): Unit number of current picture library.

Iarr(2): Number of picture segments in library.

Iarr(3..): Identifiers of stored segments, in random order.

CALL DATBUF (Iarr(1), Lthi)

CALL DATLIB (Iarr(1), Lthi)

8th Edition PAGE 24-1

Errors and Messages Last changed: Apr 7, 1995

GPGS-F User’s Guide

Chapter 24
Errors and Messages

GPGS-F will check the input arguments to see if they fit the definition of the subroutine
called, and the restrictions defined for some arguments (e.g. linetype codes must not be
negative).

In addition, the system will check if the subroutine in question may be called at that time
(e.g. ENDPIC may not be called if there is no segment open).

Note that GPGS-F will not detect if the number of arguments passed to a subroutine is
incorrect. Passing too few arguments will in most cases make the Fortran runtime system
abort the program.

24.1 GPGS-F Error Vector
If an error condition is detected, GPGS-F will build an integer array, called the GPGS-F
Error Vector, containing a description of the error condition. This Error Vector is then
passed to a routine for printing the error, or to a routine supplied by the application
program (see page 24-4).

Table 24.1 GPGS-F Error Vector.

Element
number

Description

1 Error number. Listed in Appendix I.

2 Subroutine code.
Identifier of the GPGS-F routine causing the error. This is
an integer number, listed in Appendix G.

3 Argument number causing the error, if relevant. Used only
with integer arguments. Arguments are counted left to
right in the argument list.

4 Error severity code. See Table 24.2

5 Number of GPGS-F subroutine calls made since the
application program was started.

6 Bad value. The value of the argument, given by element 3,
that caused the error.

7 GPGS-F version number (see page 1-6).

8th Edition PAGE 24-2

Errors and Messages Last changed: Apr 7, 1995

GPGS-F User’s Guide

Table 24.2 GPGS-F severity codes.

24.2 Default Error Handling
The default error handling performed by GPGS-F, is to print an error message before
taking the action indicated by the severity code. If this is 1 or 2, execution will continue,
if it is 3 or 4, the program will be terminated.

The format of the error message may be chosen by

where Ilevel = 0 selects short format, Ilevel = 1 selects extended format.

When short format is used, the values of the Error Vector is just printed, and the user have
to look up the actual error message (Appendix I) and the name of the subroutine causing
the error (Appendix G) in this manual.

When extended format is selected, GPGS-F will instead print the error message text, and
the name of the subroutine causing the error. This information is read from text files
supplied with the GPGS-F system. If GPGS-F is not able to open or read these files, the
user will be notified, and short format will be used.

Severity
code

Description.

1 Warning.
Program execution will continue, no action necessary.

Example: Trying to open a library that is already open.

2 Recoverable error.
Program execution will continue after some error
dependent recovery action has been taken.

Example: Trying to open a picture segment when a
segment is already open. In this case, the recovery action
taken is to close the previous segment.

3 Severe error.
Because of an illegal argument value, GPGS-F can not
perform the requested action, unless the bad value is
changed by an application supplied error handling routine
(see page 24-4).

4 Fatal error.
Further program execution is not possible.

CALL MSGLEV (Ilevel)

8th Edition PAGE 24-3

Errors and Messages Last changed: Apr 7, 1995

GPGS-F User’s Guide

Example 24.1 Error messages.

Note that when short format is used, the argument number and value is always printed,
even when this information is not relevant with the given error.

24.3 Error File
By default, error messages are printed on the standard output device, i.e. the terminal the
program is run from. When extended message format is selected, it is however possible
to get error messages written to a file instead of, or in addition to, the standard output.

Such an error file must be a sequential file opened by the application program. The Fortran
unit number of the file is passed to GPGS-F by

If Ifile is positive, error messages are written to that file in addition to standard output. If
Ifile is negative, messages are written to unit (-Ifile) instead of standard output.

By giving 0, the default condition is reset, i.e. error messages are written to standard
output only.

Short format Extended format

**GPGS ERROR 7
* SEVERITY 2
* CALL NO. 6
* ROUTINE NO. 60
* ARGUMENT NO. 0
* VALUE 1
**GPGS VERSION 9503

*** GPGS-F Error message ***

** Picture segment open.
The previous picture segment
should be closed.

* Routine giving error : BGNPIC
* Severity code : 2
* Call no : 6
* GPGS-F version : 9503

**GPGS ERROR 11
* SEVERITY 3
* CALL NO. 6
* ROUTINE NO. 106
* ARGUMENT NO. 3
* VALUE -1
**GPGS VERSION 9503

*** GPGS-F Error message ***

** Illegal value of argument.
Argument outside allowable range.

* Routine giving error : LINE
* Severity code : 3
* Call no : 6
* Argument no. : 3
* Value of argument : -1
* GPGS-F version : 9503

CALL ERFILE (Ifile)

8th Edition PAGE 24-4

Errors and Messages Last changed: Apr 7, 1995

GPGS-F User’s Guide

The information written by the extended message format is fetched from two text files.
When these are opened, GPGS-F will by default use the Fortran unit number set by the
installation dependent parameter MEUNIT (see Appendix A).

If this number is used by the application for other purposes, GPGS-F may be told to use
a different unit number by

where Ierru is the new Fortran unit number to use when opening the error files. Ifontu is
described on page 7-9.

If -1 is given for Ierru and/or Ifontu, the default value is reset, while 0 means no change.

24.4 Application Supplied Error Routine
Using the default GPGS-F error handling method informs the user of the errors that are
detected, and if severity code is 3 or 4, terminates the program.

In some cases, the application should perform some shutdown actions before leaving the
program (closing databases, resetting terminal conditions, etc.), and getting the program
aborted by GPGS-F will make this a problem.

To avoid such problems, GPGS-F allows the user to write his own error handling routine,
replacing the default routine from the GPGS-F library.

When GPGS-F detects an error, the system will call a routine called ERROUT, with the
Error Vector (see page 24-1) as argument. This routine is defined as

SUBROUTINE ERROUT (Iarr)
DIMENSION IARR(7)

What the application programmer has to do, is then just to write his own routine defined
the same way, and make sure this is linked/loaded instead of the GPGS-F routine.

The application supplied ERROUT routine may attempt to recover from an error
condition in cases where an argument is given an incorrect value. This is done by
changing the argument value (Iarr(6)) to a legal value, and the severity code (Iarr(4)) to
a value less than 3.

If the error condition reported indicates that it is impossible to recover, the routine should
perform the necessary application dependant shutdown action and exit. Note that
ERROUT must not call any other GPGS-F routine, except LOGERR described next.

CALL SETFNU (Ifontu, Ierru)

8th Edition PAGE 24-5

Errors and Messages Last changed: Apr 7, 1995

GPGS-F User’s Guide

The application supplied error routine may print the error message by

where Iarr is the Error Vector. When printing the message, LOGERR will use the values
set by MSGLEV and ERFILE.

24.4.1 Closing Down GPGS-F
The main reason why an application selects to provide its own error routine, is to perform
the necessary application dependent shutdown procedures.

However, if a program is aborted due to some GPGS-F error condition, GPGS-F itself
may be left in an inconsistent state, e.g. plotter files are not terminated correctly as devices
are not released, picture library files are not correctly updated and closed, etc.

To perform these kinds of shutdown actions,

should be included in any application supplied error routine.

Note that the default ERROUT routine supplied by GPGS-F does not call GPGSOF.

Example 24.2 Application supplied error routine.
 SUBROUTINE ERROUT(IVEC)
 DIMENSION IVEC(7)
C
C Print error message by using GPGS-F routine.
C
 CALL LOGERR(IVEC)
C
C If severity 1 or 2, no action necessary as the program
C will continue.
C
 IF (IVEC(4) .GT. 2) THEN
C
C The next test is not straightforward. Most obvious error
C condition making it possible to recover, is error 11,
C ‘Illegal value of argument’
C
 IF (possible-to-recover) THEN
 PRINT *,' Give new argument value:'
 READ *,IVEC(6)
 IVEC(4)=1
 ELSE
 CALL Users-shutdown-routine
 CALL GPGSOF
 ENDIF
 ENDIF
 RETURN
 END

CALL LOGERR (Iarr(1))

CALL GPGSOF

8th Edition PAGE 24-6

Errors and Messages Last changed: Apr 7, 1995

GPGS-F User’s Guide

Installation Dependent Parameters Last changed: Apr 7, 1995

8th Edition GPGS-F User’s Guide PAGE A-1

Appendix A
Installation Dependent Parameters

The information given in this appendix is mainly aimed at the site responsibles for
GPGS-F. All GPGS-F users should however know which limitations of GPGS-F are
installation dependent, and which are fixed.

The following is a list of all installation dependent parameters, with a short description on
what they are used for. For some of the parameters it is possible to request the current
value. If so, the routine to be used is mentioned.

As the GPGS-F system is delivered, the parameters are set to a default value, which is
mentioned in the list below. Some parameters should not be set to a value lower than the
default, i.e. the default value is the lower limit.

The parameters are found in the include file IDPARA.

MDLANG
Gives the default character language to be used for GPGS-F text. The value must be in the
range 1 to 11 according to the description of routine CLANG (page 7-10).

Examples: 1 = ANSI ASCII 2 = Norwegian 3 =Swedish

Default value: 2 (Norwegian)

MPOLSZ
Maximum number of vertices (corners) in polygons. Current value may be requested by
DATPAR (page 23-7).

Default value: 100 (lower limit)

MPCROS
Maximum number of crossings between an arbitrary straight line and a polygon, thus
limiting the complexity of polygons. Used for software hatching and pattern filling.
Current value may be requested by DATPAR (page 23-7).

Default value: 20 (lower limit)

MRPSIZ
Maximum size of user definable pattern. By size is meant the total number of cells in the
pattern. Current value may be requested by DATPAR (page 23-7).

Default value: 256 (lower limit)

Installation Dependent Parameters Last changed: Apr 7, 1995

8th Edition GPGS-F User’s Guide PAGE A-2

MFUNIT
Default Fortran unit number used when opening MFILE (see page A-3). The actual value
to use may be set by the application program using the SETFNU routine (page 7-9).
Current value may be requested by DATFNU (page 23-7).

Default value: 10

MEUNIT
Default Fortran unit number used when opening ERRFIL and RTFILE (see page A-3). The
same number is used as the two files are never open at the same time. The actual value to
use may be set by the application program using the SETFNU (page 24-4)routine.
Current value may be requested by DATFNU (page 23-7).

Default value: 12

MXUPOL
HLHS (Hidden Lines / Hidden Surfaces) parameter. Gives the maximum number of
polygons that may be stored in the module. Current value may be requested by DATHID
(page 23-7).

Default value: 1000 (lower limit)

MXUPTS
HLHS parameter. Gives the maximum number of vertices of a polygon stored in the
module. Must not be greater than MPOLSZ (see page A-1). Current value may be
requested by DATHID (page 23-7).

Default value: 100 (lower limit)

MAUPTS
HLHS parameter. Gives the average number of vertices of polygons stored in the module.
Used to set a maximum number of vertices that may be stored (MAUPTS*MXUPOL).
Current value may be requested by DATHID (page 23-7).

Default value: 10 (lower limit)

MXCROS
HLHS parameter. Gives the allowed maximum number of crossings between two
polygons, i.e. the number of edge versus edge crossings, as shown below.

Number of crossings: 2 Number of crossings: 4

Default value: 40 (lower limit)

Installation Dependent Parameters Last changed: Apr 7, 1995

8th Edition GPGS-F User’s Guide PAGE A-3

MXULIN
HLHS parameter. Gives the maximum number of lines that may be stored in the module.
Current value may be requested by DATHID (page 23-7).

Default value: 1000 (lower limit)

Name of files used by GPGS-F

These parameters are found in the include file FNAMES.

These parameters should be set once for all as the system is installed. Changes at some
later time will require a re-linking of all application programs using GPGS-F

NOTE! With the Unix-version, the 3 following parameters must not be changed in the
include file. Instead, the names are set up in the supplied makefile.

MFILE
Name of file containing description on GPGS-F software characters. The name will have
two parts, the first one giving a user, directory or equivalent, and the second part being the
actual filename. The second part should not be changed.

Examples: VAX/VMS : GPGS:FONTSxxx.DAT
ND-500(0) : (GPGS)GPGS-FONTS-xxx:DATA

where xxx will be changed by the GPGS-F supplier when changes has been done.

Default value: Machine dependent

ERRFIL
Name of file containing GPGS-F error messages used for extended error message format.
Same rules apply as for MFILE.

RTFILE
Name of file containing GPGS-F routine numbers used for extended error message
format. Same rules apply as for MFILE.

Changing parameters at a later time

If any of the parameters has to be changed after the GPGS-F system is installed, (parts of)
the system has to be recompiled.

If a parameter marked as HLHS parameter is changed, only the HLHS module needs
recompilation. If any of the others are changed, the complete system must be recompiled,
including the HLHS module. Drivers need however not be recompiled.

With the Unix version, the supplied makefile will ensure that the necessary modules
are updated after changing any of the parameters.

Installation Dependent Parameters Last changed: Apr 7, 1995

8th Edition GPGS-F User’s Guide PAGE A-4

Software Character Fonts Last changed: May 10, 1995

8th Edition GPGS-F User’s Guide PAGE B-1

Appendix B
Software Character Fonts

The following pages show all defined characters of all GPGS-F software fonts. If a text
string contains a character that is not defined, a space will be output.

The characters are drawn with default height/width ratio.

Software Character Fonts Last changed: May 10, 1995

8th Edition GPGS-F User’s Guide PAGE B-2

Font 0: Default GPGS-F Font

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111

112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127

160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175

176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191

192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207

208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223

224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239

240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255

Software Character Fonts Last changed: May 10, 1995

8th Edition GPGS-F User’s Guide PAGE B-3

Font 1: Simplex Roman

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111

112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127

160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175

176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191

192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207

208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223

224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239

240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255

Software Character Fonts Last changed: May 10, 1995

8th Edition GPGS-F User’s Guide PAGE B-4

Font 2: Complex Roman

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111

112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127

160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175

176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191

192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207

208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223

224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239

240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255

Software Character Fonts Last changed: May 10, 1995

8th Edition GPGS-F User’s Guide PAGE B-5

Font 3: Complex Italic

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111

112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127

160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175

176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191

192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207

208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223

224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239

240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255

Software Character Fonts Last changed: May 10, 1995

8th Edition GPGS-F User’s Guide PAGE B-6

Font 4: Duplex Roman

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111

112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127

160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175

176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191

192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207

208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223

224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239

240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255

Software Character Fonts Last changed: May 10, 1995

8th Edition GPGS-F User’s Guide PAGE B-7

Font 5: Simplex Greek

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111

112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127

Software Character Fonts Last changed: May 10, 1995

8th Edition GPGS-F User’s Guide PAGE B-8

Font 6: Complex Greek and Cyrillic

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111

112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127

128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143

144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159

160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175

224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239

240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255

Software Character Fonts Last changed: May 10, 1995

8th Edition GPGS-F User’s Guide PAGE B-9

Font 7: Mathematical

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111

112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127

Software Character Fonts Last changed: May 10, 1995

8th Edition GPGS-F User’s Guide PAGE B-10

Additional GPGS-F Products Last changed: Apr 7, 1995

8th Edition GPGS-F User’s Guide PAGE C-1

Appendix C
Additional GPGS-F Products

C.1 MICRO-GPGS-F
MICRO-GPGS-F is a 2-dimensional subset of GPGS-F, originally developed for use on
computers with limited addressing space. It is a fact that many GPGS-F application
programs use just a very small part of GPGS-F, and these do not need all the advanced
possibilities of the system. Even if there is no problem with limited addressing space, use
of MICRO-GPGS-F instead of GPGS-F may speed up execution time because of its
simplified internal structure.

All routines of MICRO-GPGS-F are identical to the corresponding GPGS-F routines, and
this User’s Guide may hence be used as a User’s Guide for MICRO-GPGS-F as well, by
just skipping routines that are not part of MICRO-GPGS-F.

An application using only the routines that are part of MICRO-GPGS-F, will give the
same result whether GPGS-F or MICRO-GPGS-F is used, with one exception. If
SOFCHA is not called to select character quality, MICRO-GPGS-F will by default use
hardware characters, while GPGS-F will use software.

The interface between MICRO-GPGS-F and the drivers is identical to the interface
between GPGS-F and the drivers. This means that all GPGS-F drivers may also be used
with MICRO-GPGS-F.

Table C.1 MICRO-GPGS-F subroutines.
BGNPIC BGNTRN CESCAP CFONT CHARA CHARC
CHARE CHARF CHARI CHARS CIRAPR CIRC
CIRCR CIRD CIRDR CJUST CLANG CLICTL

CLRDEV COLOUR COMP COTHLS COTHSV COTIND
COTRGB CROTA CROTAD CSHEA CSIZEL CSIZES
DATATR DATCHR DATCIR DATCLI DATCXC DATDEV
DATDNO DATMAR DATPNO DATPOS DATUSR DATVP
DATWIN ECHCTL ECHTOL ECHTXC ECHVP ENDPIC
ENDTRN GPGS IDEN INTENS INWAIT LINE

LINER MARKER MODTRN MSIZE NDCWIN NITDEV
NITOPT PITYP POLY POLYR REATOL REQBUT

REQLOC REQTXC REQVAL RLSDEV ROTA ROTAD
SAVTRN SCAL SELDEV SHEA SOFCHA SOFCIR

TRAN UPDAT USRWIN VPORT WINDW WINNDC
WINUSR WRITOL XLAT

Additional GPGS-F Products Last changed: Apr 7, 1995

8th Edition GPGS-F User’s Guide PAGE C-2

C.1.1 Main Limitations Compared to GPGS-F
By comparing Table C.1 to the list of GPGS-F routines, the limitations of MICRO-
GPGS-F will be found. The following list gives a summary of these limitations.

• No 3 dimensional routines.

• No picture segment handling, i.e. no retained or pseudo picture segments may be
used. Following from this, use of background device is not available.

• No hidden lines/hidden surfaces removal.

• No software simulation of patterns or hatch styles. Only polygon types 1,2 and
>127 may be used. Pattern or hatch is selected by PITYP.

• Pixel arrays are not available.

• Only font 0 (standard GPGS-F) available for software characters. The CFONT
routine is however available for selecting hardware fonts.

• No user definable linetypes or line representations.

• No polyline routines (TAB..) or curve routines (CURV..).

• Reduced interaction facilities.

• The routines for handling multi window devices are not included.

C.2 GRAPHISTO
GRAPHISTO is a subroutine package for presentation of 2 dimensional data (business
graphics type) as curves, bar charts or pie charts.

The package contains high level self-scaling routines, making it possible to create
complete plots by using very few subroutine calls. In addition, a large number of routines
are available for defining the picture in more detail.

Figure C.1 GRAPHISTO example plot.

Account, first 6 months

−5

0

5

10

15

20

P
ro

fit
 (

10
00

 $
) Budget

Result

January February March April May June Period

A B C A B C A B C A B C A B C A B C Department

Additional GPGS-F Products Last changed: Apr 7, 1995

8th Edition GPGS-F User’s Guide PAGE C-3

GRAPHISTO is interfaced to GPGS-F, i.e. GPGS-F routines are used for all basic
operations, such as creating the graphics and defining temporary transformations to model
the different parts of a complete plot.

The interface between GRAPHISTO and GPGS-F is defined so that all GRAPHISTO
routines, after using GPGS-F, will reset any internal GPGS-F state. Because of this, an
application may combine GRAPHISTO routine calls with any GPGS-F routine, e.g. the
modelling transformation routines, allowing plots like the one below to be created.

GRAPHISTO does not contain routines for performing operations that are already
available in GPGS-F. This means that some GPGS-F must be included in GRAPHISTO
applications, such as all device handling routines.

Figure C.2 GRAPHISTO plots transformed by GPGS-F.

The GRAPHISTO subroutine package is described in the GRAPHISTO User’s Manual,
which may be obtained from the GPGS-F version responsible.

A

6.9%

B

9.3%

C

6.3%

D

11.0%

E

13.6%

F

12.3%

G

11.5%

H

9.5%

I

11.0%

J

8.4%0

20

40

60

80

0

20

40

60

80

0

20

40

60

80

Additional GPGS-F Products Last changed: Apr 7, 1995

8th Edition GPGS-F User’s Guide PAGE C-4

C.3 SURRENDER
SURRENDER (short for SURface RENDERing) is a subroutine package for
presentation of 3 dimensional data (z=f(x,y)), either as a 3D perspective plot or as a 2D
contour plot.

Basic plots are made by using a single subroutine call, but additional routines are available
for adding various plot attributes or setting options for the basic plotting routines.
SURRENDER contains its own viewing module for easy specification of view direction
for perspective plots.

SURRENDER is interfaced to both GRAPHISTO and GPGS-F. GRAPHISTO routines
are used for adding axes and axes annotations, while GPGS-F is used for all basic drawing
operations and transformation purposes.

Figure C.3 SURRENDER example plot.

The SURRENDER subroutine package is described in the SURRENDER User’s
Manual, which may be obtained from the GPGS-F version responsible.

−2

−2

0

0

0

0

0

2

2
4

4

4

−15
−10

−5
0

5
10

15

X

−10
−5

0

5

10
15 Y

−8

−6

−4

−2

0

2

4

6Z

Machine Dependencies Last changed: Apr 7, 1995

8th Edition GPGS-F User’s Guide PAGE D-1

Appendix D
Machine Dependencies

All GPGS-F subroutines are machine independent. There are however some aspects
concerning the use of the system that is dependent on the actual machine being used.

The most obvious machine dependency is how to link/load an application program with
GPGS-F. As this in addition might be installation dependent, no description is given in
this manual. Full details on this is obtained from the site responsible of GPGS-F.

A second machine dependency is how to specify the disc file or communication channel
to use for GPGS-F input/output. This is described in the section below.

D.1 File / Communication Channel Numbers
As explained in Chapter 1, GPGS-F will by default write its output to the standard output
device, i.e. normally the terminal the program is run from. By using the DEVOPT routine
(see page 1-4), the output may be redirected to another communication line, or to a disc
file. This must be used if plotters are connected to separate channels, and may be used by
drivers operating in Write-Only Mode to store plotting commands on disc files.

The file/channel number is used as follows on different computers:

ND 100 / 500(0) computers
The file number given may be a SINTRAN Logical Device Number or a Fortran file
number. GPGS-F will first check if the number given is used as a Fortran file number. If
so, that file is used for output. If not, the number is expected to be a SINTRAN LDN. If
files to be used for GPGS-F input/output are opened by Fortran, the file access must be
specified as ‘RW’, or ‘W’ for drivers operating in Write-Only Mode.

VAX/ VMS computers
GPGS-F will use logical file name FOR0nn for input/output, where nn is the number
given to DEVOPT. Thus, the actual file or terminal line must be opened by the application
program, or assigned to the logical file name before running the application. If no Fortran
open or assignment is used, the physical file FOR0nn.DAT will be used.

Machine Dependencies Last changed: Apr 7, 1995

8th Edition GPGS-F User’s Guide PAGE D-2

Unix computers
With the Unix version of GPGS-F, the input/output actions are performed by C language
functions. The file number is thus a C language unit number, and the file must be opened
by a C function.

A GPGS-F utility routine is available for this purpose. It is invoked by

where Idev is the GPGS-F device number and Filename is the name of the file or
communication line to be used (examples: '/dev/tty2', 'plotfile.dat'). The routine will
return the file number through Iunit. If this is negative, the file could not be opened.

A file/channel opened by NITTTY must be closed by a second GPGS-F utility routine

where Iunit is the file number returned by NITTTY. Do not use Fortran CLOSE
statements to close files opened by NITTTY.

Other computers
Information on this aspect for other computers may be obtained from the GPGS-F version
responsible for the given version.

Iunit = NITTTY (Idev, Filename)

CALL CLSTTY (Iunit)

Device Driver Descriptions Last changed: Jan 18, 1996

8th Edition GPGS-F User’s Guide PAGE E-1

Appendix E
Device Driver Descriptions

This appendix contains a short description of the features provided by each GPGS-F
device driver. Additional information is supplied with some drivers as they are delivered.
This is mentioned in the description of the drivers it applies to.

There may be some new drivers that are not included in this appendix, if developed after
the last revision of the manual. The site responsible for GPGS-F will have an updated list
of drivers, and complete driver description of all drivers available on the computer he/she
is responsible for.

The following information is given for each driver:

1 Heading:
Contains the GPGS-F driver number to be used with NITDEV, and a four letter name
used when loading/linking the driver. The actual filename is dependent on what
computer is used. The site responsible will know the details on this.

Note that in some cases the same name is given with more than one driver number. This
means that the same driver is to be used by these driver numbers, and the driver will
function slightly different depending on the number actually given by NITDEV.

2 Description:
A more detailed description of the graphic device, and other device numbers using the
same driver, if any.

If the driver is interfaced to other low-level software, the name of this is given. This
software is normally obtained from the supplier of the graphic device.

3 Options recognized by the driver:
Explains the meaning of device dependent options supplied through DEVOPT. If not
otherwise specified, the options are integer options. Default value is 0 for all integer
options.

4 Device data:
•Maximum viewport size in X and Y direction (NDC). As returned by 2 first real
elements from DATDEV.

•Default viewport size in meters. As returned by 4th real element from DATDEV.
•Spot size in fraction of default viewport. As returned by 5th and 7th real element from
DATDEV, i.e. inverse of the resolution. If equal resolution in X and Y just one value
is returned.

The device data given for ‘non-physical devices’ (like Pseudo and File) are in most
cases the default values returned from DATDEV, and have no physical meaning.

Device Driver Descriptions Last changed: Jan 18, 1996

8th Edition GPGS-F User’s Guide PAGE E-2

5 Interactive facilities:
Lists the interactive tools available, and explains any special echo type and extra data
available. If not especially mentioned, sample and event mode input are not available.

For devices supporting pick input, the length of the namestack is given. Note that this
includes the segment identifier, i.e. the allowable number of names is one less than the
number given.

ESCAPE tools (tool numbers 900-999) available are also listed.

6 Retained segment facilities:
•Retained segments capability. States if retained segments are available, and how these
are stored (in the device, in the driver or in the GPGS-F buffer/pick simulation
module).

•Selective erase. If not available means that the complete image is redrawn when the
picture is changed.

• Image transformations available.
•Number of segment priorities available.

7 Raster facilities:
•Length (number of foreground colours) and type of colour table.

type may be one of:
Fixed: Not possible to change colour table.
Static: Changing the colour table will not affect previously drawn

primitives.
Dynamic: Changing the colour table will change the colour of previously

drawn primitives.
•Polygon fill with solid colour capability.
•Default texture type (used if PITYP(0) is called). If not given, hatch is default.
•Number of hardware/driver predefined hatch styles.
•Number of hardware/driver predefined patterns.
•Number of user definable hatch styles that may be stored in the hardware/driver.
•Number of user definable patterns that may be stored in the hardware/driver.
•Pixel array drawing and readback capability.

Note that software hatching is available with all devices. Software patterned fill is
available if pixel array drawing is possible.

8 Special features:
Lists various capabilities of the device hardware or driver, such as number of linetypes,
text sizes, text directions and whether shearing is available, circle arcs capability, and
if markers are generated by hardware or driver software.

9 Miscellaneous:
Gives additional device specific information of interest.

The drivers are described in device number sequence, starting with lowest number. If you
know the driver name and want to find the driver number, consult the table on the next
page.

Device Driver Descriptions Last changed: Jan 18, 1996

8th Edition GPGS-F User’s Guide PAGE E-3

Table E.1 Alphabetic List of Device Drivers.

Driver

Name Number(s)

ALTK 41

APOL 33

C600 40

CALC 13

CC81 19, 86

CCOL 88

CNA2 82

CPCI 81

DUMY 1

FILE 8

GTEC 92

HP20 5

HP21 11

HP48 51

HPGL 4, 9, 18, 80, 83

ICGM 35

KING 14

LASR 87

META 3

NDLA 91

PSCR 90

PSEU 0

RASP 6

REGI 57, 64, 74

RUBY 71

SIMU none
(page E-4)

SNAP 2

TA10 84

TD22 55

TDGO 63

TECH 73

TPAZ 68, 70

TX05 62

TX14 20, 21

TX25 54

TX27 53

TX29 67

TX42 58

TX43 59

TX44 22

TX45 89

TX62 12

TX63 10

VCOL 85

VERS 15

WW32 65, 66

WWGM 69

XWDW 72

Driver

Name Number(s)

Device Driver Descriptions Last changed: Jan 18, 1996

8th Edition GPGS-F User’s Guide PAGE E-4

No. — 'SIMU' Buffer/pick simulation module

Description:
The buffer/pick simulation module, or SIMU driver, is no real driver, but a set of utility
routines for simulating picture segment handling and pick input on terminals with no
local segment storage.

The module is normally stored on a separate file, and has to be linked/loaded with
programs using retained picture segments, if the description of the driver states:
‘Retained segments stored in GPGS-F buffer/pick simulation module’.

Linking/loading the module when it is actually not needed will not give any error, but
the processing time will in some cases increase.

Driver 0

Device Driver Descriptions Last changed: Jan 18, 1996

8th Edition GPGS-F User’s Guide
Appendix E

No. 0 'PSEU' Pseudo Segment Generator

Description:
Driver for generating pseudo picture segments in GPGS-F buffers or in picture
libraries.

Device dependent options:
None

Maximum viewport size (NDC):
1.0 × 1.0

Default viewport size:
1.0 meter

Spot size (fraction of default viewport):
Not relevant.

Interactive tools:
None

Retained segments:
None

Raster facilities:
All commands are stored in the pseudo segments.
Pixel arrays and software patterned polygons should not be used with this driver, as
these routines must know the physical resolution of the device in use.

Special features:
All primitives and primitive attributes are stored in the pseudo segments without
checking.

Miscellaneous:

Driver 1

Device Driver Descriptions Last changed: Jan 18, 1996

8th Edition GPGS-F User’s Guide
Appendix E

No. 1 'DUMY' Dummy driver

Description:
No-operation driver for debugging purposes.
Specifying this driver makes it possible to execute a GPGS-F program without
generating any output.
This driver is always available, i.e. there is no object file that has to be linked/
loaded.

Driver 2

Device Driver Descriptions Last changed: Jan 18, 1996

8th Edition GPGS-F User’s Guide
Appendix E

No. 2 'SNAP' DIPC dump

Description:
Driver for writing GPGS-F Device Independent Picture Code (the code passed
between GPGS-F and the device drivers) to standard output or to disc file.
This driver is mainly to be used for debugging purposes by GPGS-F version
responsibles.

Device dependent options:
Option 3 : Retained segments storage switch, for checking DIPC for different

kinds of devices (see description of DATDEV on page 23-4).
0 = no buffer usage (can not store segments)
2 = retained segments stored in driver.
4 = retained segments stored in GPGS-F simulation module.

Maximum viewport size (NDC):
1.0 × 1.0

Default viewport size:
1.0 meter

Spot size (fraction of default viewport):
1/512

Interactive tools:
None

Retained segments:
As specified by device dependent option 3.

Raster facilities:
All commands will be written to the output file.

Special features:
All primitives and primitive attributes are written to output file without checking.

Miscellaneous:
The DIPC commands are written using Fortran formatted WRITE.

Driver 3

Device Driver Descriptions Last changed: Jan 18, 1996

8th Edition GPGS-F User’s Guide
Appendix E

No. 3 'META' GPGS-F ASCII metafile generator

Description:
Driver for writing device independent picture code on formatted sequential file. The
file will contain ASCII characters in the range 32-126 only, and may thus easily be
moved between different computers (compare to driver 8).

Device dependent options:
Option 4 : Resolution in X direction (number of pixels in 1.0 NDC). Default: 512.
Option 5 : Resolution in Y direction. Default: same as in X direction.

NOTE! options 4 and 5 are relevant only when pixel related GPGS-F
routines are used. When later displaying the file contents, correct output
will be generated only on devices with the resolution given by these
options.

Text option 1 : Output file name.

Maximum viewport size (NDC):
1.0 × 1.0

Default viewport size:
1.0 meter

Spot size (fraction of default viewport):
As specified by options 4 and 5.

Interactive tools:
None

Retained segments:
None

Raster facilities:
All commands will be written to the output file. Pixel arrays and software patterned
polygons will be generated based on the resolution specified by options 4 and 5.

Special features:
All primitives and primitive attributes are written to output file without checking.

Miscellaneous:
If not given by text option 1, the driver will ask for the output file name.

METASHOW: Program for displaying contents of file

The METASHOW program will read a file generated by the META driver and display the
contents on a device specified by the user.

The program will ask for the name of the file to read, GPGS-F device number to use,
options to pass to the driver (through DEVOPT), and size of the resulting drawing.

With the Unix version, specifying option 1 to DEVOPT > 0 will make the program ask
for the name of a file to use for driver output (this file is opened by the METASHOW
program by using the GPGS-F routine NITTTY).

Driver 4

Device Driver Descriptions Last changed: Jan 18, 1996

8th Edition GPGS-F User’s Guide
Appendix E

No. 4 'HPGL' Hewlett-Packard 7475 plotter

Description:
Driver for Hewlett-Packard 7475 plotter.

Device dependent options:
Option 3 : = 1 ➝ The driver will operate in ‘Write-Only Mode’.

Other values give ‘Read/Write Mode’.
Option 4 : Paper size when ‘Write-Only Mode’.

3 = A3 paper, 4 = A4 paper.
Option 6 : = 1 ➝ Default linepattern length will be 2% of distance between P1

and P2 (backwards compatibility).
Option 7 : = 1 ➝ Plot is rotated 90 degrees.

Maximum viewport size (NDC):
Write-Only Mode / A3 paper : 1.463 × 1.0
Write-Only Mode / A4 paper : 1.429 × 1.0
Read/Write Mode : Dependent on current Hard Clip Limits.

Default viewport size:
Write-Only Mode / A3 paper : 0.274 meter
Write-Only Mode / A4 paper : 0.192 meter
Read/Write Mode : Dependent on current Hard Clip Limits.

Spot size (fraction of default viewport):
Write-Only Mode / A3 paper : 1/11040
Write-Only Mode / A4 paper : 1/7721
Read/Write Mode : Dependent on current Hard Clip Limits.

Interactive tools:
Available in ‘Read/Write Mode’ only:

201 - Pen position.
Optional pen status, 1=Up, 0=Down (REATOL).

Escape tools:
912 - Pen speed.
920 - Direct access to plotter commands.

Retained segments:
None

Raster facilities:
Fixed colour table. Length : 6

Special features:
•8 hardware generated linetypes. Pattern length is by default 5 mm. Specifying a 2-
digit linetype mn gives linetype n with pattern length m% of distance between P1
and P2 (see HP manual). Linepattern scalable.

•Hardware text in all sizes and directions. Shearing available.
•Hardware circle arcs.
•Markers are generated by driver software.

Miscellaneous:
The plotter will normally use Xon/Xoff handshake.
Additional information available.

Driver 5

Device Driver Descriptions Last changed: Jan 18, 1996

8th Edition GPGS-F User’s Guide
Appendix E

No. 5 'HP20' Hewlett-Packard 7220 plotter

Description:
Driver for Hewlett-Packard 7220 plotter.

Device dependent options:
None

Maximum viewport size (NDC):
1.403 × 1.0

Default viewport size:
0.285 meter

Spot size (fraction of default viewport):
1/11400

Interactive tools:
201 - Pen position.

Optional pen status, 1=Up, 0=Down (REATOL).

Escape tools:
912 - Pen speed.
920 - Direct access to plotter commands.

Retained segments:
None

Raster facilities:
Fixed colour table. Length : 8

Special features:
•8 hardware generated linetypes. Pattern length is by default 2% of the distance P1-
P2 (see HP manual for description on P1 and P2). Specifying a 2-digit linetype mn
gives linetype n with pattern length m%.

•Hardware text in all sizes and directions. Shearing available.
•Hardware circle arcs.
•Markers are generated by driver software.

Miscellaneous:
The plotter will normally use Xon/Xoff handshake.

Automatic paper advance specified by CALL CLRDEV (idev, icod), where
icod=100 gives half page advance,
icod=200 gives full page advance.

Additional information available.

Driver 6

Device Driver Descriptions Last changed: Jan 18, 1996

8th Edition GPGS-F User’s Guide
Appendix E

No. 6 'RASP' Raster printers

Description:
Driver for raster (matrix) printers. The driver builds a raster image that is dumped
on the printer. The following printers are currently supported:

Philips GP300 Wenger 4/1 HP LaserJet II
The list will be extended on demand.

Device dependent options:
Option 3 : Printer code.

3 - Philips GP300
8 - HP LaserJet II, resolution 150 dots/inch

10 - Wenger 4/1, resolution 72 dots/inch, 1-colour.
11 - Wenger 4/1, resolution 144 dots/inch, 1-colour.
12 - Wenger 4/1, resolution 72 dots/inch, 4-colour.
13 - Wenger 4/1, resolution 144 dots/inch, 4-colour.

Option 4 : Default linewidth in pixels. If not given, 1 is used.

Maximum viewport size (NDC):
Printer code 3 : 1.381 × 1.0
Printer code 8 : 1.413 × 1.0
Printer code 9-12 : 1.388 × 1.0

Default viewport size:
Printer code 3, 9-12 : 0.204 meter
Printer code 8 : 0.197 meter

Spot size (fraction of default viewport):
Printer code 3, 10, 12 : 1/1152
Printer code 8 : 1/1168
Printer code 9, 11 : 1/576

Interactive tools:
None

Retained segments:
None

Raster facilities:
•Fixed colour table. Length : printer dependent.

Printer code 3, 8, 9, 11 : Length 1
Printer code 10, 12 : Length 7

•Polygon fill with solid colour.
•77 predefined patterns.
•3 user definable patterns. Fixed size 16×16.
•Pixel array drawing.

Special features:
•Linetypes are generated by driver software. Linewidth: 1 to 9 pixels.
•No hardware text.
•Markers are generated by driver software.

Miscellaneous:

Driver 8

Device Driver Descriptions Last changed: Jan 18, 1996

8th Edition GPGS-F User’s Guide
Appendix E

No. 8 'FILE' GPGS-F binary metafile generator

Description:
Driver for writing device independent picture code on unformatted binary file. The
file contents may be displayed only on computers of the same type as the one on
which the file was generated (compare to driver 3).

Device dependent options:
Text option 1 : Output file name. Not used with the VAX/VMS version.

Maximum viewport size (NDC):
1.0 × 1.0

Default viewport size:
1.0 meter

Spot size (fraction of default viewport):
Not relevant.

Interactive tools:
None

Retained segments:
None

Raster facilities:
Pixel array not available, all other raster commands written to output file.

Special features:
All primitives and primitive attributes are written to output file without checking.

Miscellaneous:
With the VAX/VMS version, logical file FOR008 will be used as output file. With
other versions, the driver will ask for the output file name if this is not given by text
option 1.

FILESHOW: Program for displaying contents of file

The FILESHOW program will read a file generated by the FILE driver and display the
contents on a device specified by the user.

The VAX/VMS version will read from logical file FOR008, other versions will ask for
the name of the file to read.

All versions will ask for the output device number, the size of the resulting drawing, and
the number of options to supply through DEVOPT.

With the Unix version, specifying option 1 to DEVOPT >0 will make the program ask for
the name of a file to use for driver output. This file is opened within the FILESHOW
program by using the GPGS-F routine NITTTY.

Driver 9

Device Driver Descriptions Last changed: Jan 18, 1996

8th Edition GPGS-F User’s Guide
Appendix E

No. 9 'HPGL' Hewlett-Packard 7470 plotter

Description:
Driver for Hewlett-Packard 7470 plotter.

Device dependent options:
Option 3 : = 1 ➝ The driver will operate in ‘Write-Only Mode’.

Other values give ‘Read/Write Mode’.
Option 6 : = 1 ➝ Default linepattern length will be 2% of distance between P1

and P2 (backwards compatibility).

Maximum viewport size (NDC):
1.424 × 1.0

Default viewport size:
0.191 meter

Spot size (fraction of default viewport):
1/7650

Interactive tools:
Available in ‘Read/Write Mode’ only:

201 - Pen position.
Optional pen status, 1=Up, 0=Down (REATOL).

Escape tools:
912 - Pen speed.
920 - Direct access to plotter commands.

Retained segments:
None

Raster facilities:
Fixed colour table. Length : 2

Special features:
•8 hardware generated linetypes. Pattern length is by default 5 mm. Specifying a 2-
digit linetype mn gives linetype n with pattern length m% of distance between P1
and P2 (see HP manual). Linepattern scalable.

•Hardware text in all sizes and directions. Shearing available.
•Markers are generated by driver software.

Miscellaneous:
The plotter will normally use Xon/Xoff handshake. In ‘Read/Write Mode’, the
plotter will stop and wait for manual mounting of pen if pen different than 1 or 2 is
selected.
Additional information available.

Driver 10

Device Driver Descriptions Last changed: Jan 18, 1996

8th Edition GPGS-F User’s Guide
Appendix E

No. 10 'TX63' Textronix 4663 plotter

Description:
Driver for Tektronix 4663 A2-size plotter.

Device dependent options:
None

Maximum viewport size (NDC):
Page format: C hor. A2 hor. A3 hor. or vert.
Max. viewport: 1.354 × 1.0 1.440 × 1.0 1.440 × 1.0

Default viewport size:
Page format: C hor. A2 hor. A3 hor. or vert.
Size (meter): 0.394 0.4 0.277

Spot size (fraction of default viewport):
1/3000

Interactive tools:
4 - Bell (ECHTOL).

201 - Pen position.
Optional MOVE(0)/DRAW(1)/LAST(2) button pressed (REATOL).

Retained segments:
None

Raster facilities:
Fixed colour table. Length : 2

The plotter will stop and wait for manual mounting of pen if other pens are
addressed.

Special features:
•6 hardware generated linetypes.
•Hardware text in all sizes and directions. Shearing available.
•Hardware circle arcs.
•Markers are generated by driver software.

Miscellaneous:

Driver 11

Device Driver Descriptions Last changed: Jan 18, 1996

8th Edition GPGS-F User’s Guide
Appendix E

No. 11 'HP21' Hewlett-Packard 7221 plotter

Description:
Driver for Hewlett-Packard 7221 plotter.

Device dependent options:
Option 2 : Handling of out-of-range pen numbers.

0 ➝ installation dependent default action.
1 ➝ use pen number 1.
2 ➝ stop and wait until pen is manually changed, and ENTER pushed.

Option 3 : Paper change action.
0 ➝ installation dependent default action.
1 ➝ change paper manually, and push ENTER.
2 ➝ automatic paper advance.

Maximum viewport size (NDC):
1.5 × 1.0

Default viewport size:
0.250 meter

Spot size (fraction of default viewport):
1/2000

Interactive tools:
201 - Pen position.

Optional pen status, 1=Up, 0=Down (REATOL).
Escape tools:

912 - Pen speed.

Retained segments:
None

Raster facilities:
Fixed colour table. Length : 4 or 8

Special features:
•10 hardware generated linetypes. Linetype 1-10 give fixed dash lines, linetypes
11-20 give same patterns as variable dash lines (see HP manual).

•Hardware text in all sizes and directions. Shearing available.
•Hardware circle arcs.
•16 hardware generated markers.

Miscellaneous:
Action performed on CALL CLRDEV (Idev, Icod):

Icod = 0, default action as given by device option 3.
Icod = 100, advance paper a half page.
Icod = 200, advance paper a full page.

Additional information available.

Driver 12

Device Driver Descriptions Last changed: Jan 18, 1996

8th Edition GPGS-F User’s Guide
Appendix E

No. 12 'TX62' Textronix 4662 plotter

Description:
Driver for Tektronix 4662 plotter. Versions available for 1-pen and 8-pen plotter.

Device dependent options:
None

Maximum viewport size (NDC):
1.5 × 1.0

Default viewport size:
0.250 meter

Spot size (fraction of default viewport):
1/2732

Interactive tools:
4 - Bell (ECHTOL).

201 - Pen position.
Optional pen status, 1=Up, 0=Down (REATOL).

Retained segments:
None

Raster facilities:
Fixed colour table. Length : 1 or 8

Special features:
•5 different linetypes generated by driver software.
•Hardware text in all sizes and directions.
•Markers are generated by driver software.

Miscellaneous:

Driver 13

Device Driver Descriptions Last changed: Jan 18, 1996

8th Edition GPGS-F User’s Guide
Appendix E

No. 13 'CALC' CalComp pen plotters

Description:
Driver for CalComp pen plotters, and compatibles. The driver is interfaces to HCBS
(Host Computer Basic Software). See also driver no. 81.

Device dependent options:
Option 1 : Passed as third argument to HCBS routine PLOTS.

Maximum viewport size (NDC):
40.0 × 1.0

Default viewport size:
Plotter dependent.

Spot size (fraction of default viewport):
Plotter dependent

Interactive tools:
Escape tools:

913 - Farr(1) = Line pattern scaling factor.

Retained segments:
None

Raster facilities:
Fixed colour table. Length : Plotter dependent

Special features:
•5 different linetypes generated by driver software.
•Hardware text simulated by driver software.
•Markers are generated by driver software.

Miscellaneous:
The driver assumes that HCBS uses cm’s as device units.
The following HCBS routines are called by the driver:

PLOTS PLOT NEWPEN

Driver 14

Device Driver Descriptions Last changed: Jan 18, 1996

8th Edition GPGS-F User’s Guide
Appendix E

No. 14 'KING' Kongsberg Kingmatic

Description:
Driver for Kongsberg Kingmatic drawing table.

Device dependent options:
None

Maximum viewport size (NDC):
2.5 × 2.0

Default viewport size:
0.60 meter

Spot size (fraction of default viewport):
1/6000

Interactive tools:
None

Retained segments:
None

Raster facilities:
Fixed colour table. Length : 4

Special features:
•10 hardware generated linetypes.
•Hardware text in all sizes and directions.
•Hardware circle arcs.
•Markers are generated by driver software.

Miscellaneous:

Driver 15

Device Driver Descriptions Last changed: Jan 18, 1996

8th Edition GPGS-F User’s Guide
Appendix E

No. 15 'VERS' Versatec monochrome plotters

Description:
Driver for Versatec monochrome raster plotters.
The driver is interfaced to Versaplot software.
See also driver no. 85

Device dependent options:
Option 3 : Passed as first argument to PLOTS.
Option 4 : Paper width in inches of actual plotter.

Default: Installation dependent.
Option 5 : Max. paper length in percent of paper width.

Default: 130.
Option 6 : Plotter density, dots per inch.

Default: Installation dependent.

Maximum viewport size (NDC):
Plotter dependent.

Default viewport size:
Plotter dependent.

Spot size (fraction of default viewport):
Plotter dependent.

Interactive tools:
None

Retained segments:
None

Raster facilities:
•Fixed colour table. Length: 1
•10 user definable patterns. Fixed size 16×16

Special features:
•7 hardware generated linetypes.
Linewidth: 1 to 9 dots. Default: Installation dependent.

•Hardware text in all sizes and directions.
Character height/width ratio is constant.

•Hardware circle arcs.
•14 hardware generated markers.

Miscellaneous:
The Versaplot software has to be changed to use this driver.
Additional information available.

Driver 18

Device Driver Descriptions Last changed: Jan 18, 1996

8th Edition GPGS-F User’s Guide
Appendix E

No. 18 'HPGL' Hewlett-Packard 758x plotters

Description:
Driver for Hewlett-Packard 7580, 7585 and 7586 plotters.

Device dependent options:
Option 3 : = 1 ➝ The driver will operate in ‘Write-Only Mode’.
Option 4 : Paper size if ‘Write-Only Mode’, n=0-4 means An size.

Other paper sizes may be specified as lllww where lll is the paper length
and ww is the paper width, both in cm’s.

Option 5 : Plotter model if ‘Write-Only Mode’. One of: 7580, 7585, 7586, -7586
(7586 with sheet media), 9001 (as 7586, but using AH instead of PG).

Option 6 : = 1 ➝ Default linepattern length will be 2% of distance between P1
and P2 (backwards compatibility).

Option 7 : = 1 ➝ Plot is rotated 90 degrees.

Maximum viewport size (NDC):
Write-Only Mode: A0 A1 A2 A3 A4

7580 : - 1.383×1.0 1.384×1.0 1.359×1.0 1.0×1.645
7585/6 : 1.469×1.0 1.383×1.0 1.0×1.523 1.359×1.0 1.0×1.645

Read/Write Mode : Dependent on current Hard Clip Limits.

Default viewport size:
Write-Only Mode: A0 A1 A2 A3 A4

7580 : - 0.568 m 0.393 m 0.271 m 0.165 m
7585/6 : 0.817 m 0.568 m 0.373 m 0.271 m 0.165 m

Read/Write Mode : Dependent on current Hard Clip Limits.

Spot size (fraction of default viewport):
Write-Only Mode: A0 A1 A2 A3 A4

7580 : - 1/22720 1/15720 1/10860 1/6600
7585/6 : 1/32680 1/22720 1/14950 1/10860 1/6600

Read/Write Mode : Dependent on current Hard Clip Limits.

Interactive tools:
Available in ‘Read/Write Mode’ only:

201 - Pen position. Optional pen status, 1=Up, 0=Down (REATOL)
Escape tools:

912 - Pen speed and acceleration.
920 - Direct access to plotter commands.

Retained segments:
None

Raster facilities:
Fixed colour table. Length : 8

Special features:
•8 hardware generated linetypes. Pattern length is by default 5 mm. Specifying a 2-
digit linetype mn gives linetype n with pattern length m% of the distance between
P1 and P2 (see HP manual). Adding 100 to the linetype will draw lines using
complete pattern segments (negative linetypes in HPGL). Linepattern scalable.

•Hardware text in all sizes and directions. Shearing available.
•Hardware circle arcs.
•15 hardware generated markers.

Miscellaneous:
The plotter will normally use Xon/Xoff handshake.
Additional information available.

Driver 19

Device Driver Descriptions Last changed: Jan 18, 1996

8th Edition GPGS-F User’s Guide
Appendix E

No. 19 'CC81' CalComp-81 plotter

Description:
Driver for CalComp-81 A3-size pen plotter. The same plotter is available from other
vendors (Philips, Servogor and others?).
See also driver no. 86

Device dependent options:
None

Maximum viewport size (NDC):
1.207 × 1.0

Default viewport size:
0.280 meter

Spot size (fraction of default viewport):
1/2800

Interactive tools:
201 - Pen position.

Escape tools:
920 - Direct access to plotter commands.

Retained segments:
None

Raster facilities:
Fixed colour table. Length: 8

Special features:
•6 hardware generated linetypes. Pattern length is scaled by using a 2-digit linetype
‘nm’ where ‘m’ is the wanted linetype. Increasing ‘n’ increase the pattern length.

•Hardware text in all sizes and directions. Shearing available.
•Hardware circle arcs.
•9 hardware generated markers.

Miscellaneous:
The plotter will use Xon/Xoff handshake.
Action performed on CALL CLRDEV (Idev, Icod):

Icod = 0-99, paper must be changed manually.
Icod = 100, paper is advanced approx. 4 cm’s more than actually used.
Icod = 101-163, paper is advanced (Icod-100) cm’s.

Driver 20

Device Driver Descriptions Last changed: Jan 18, 1996

8th Edition GPGS-F User’s Guide
Appendix E

No. 20 'TX14' Tektronix 4010-4013

Description:
Driver for Tektronix 4010-4013 storage tubes, and a lot of compatibles.
See also driver no. 21.

Device dependent options:
None

Maximum viewport size (NDC):
1.3 × 1.0

Default viewport size:
0.1422 meter

Spot size (fraction of default viewport):
1/780

Interactive tools:
2 - Keyboard.
3 - Pick, 10 level namestack.
4 - Bell (ECHTOL).

201 - Graphic cursor.
Optional character typed, A1 format (REATOL).

202 - Optional tablet.

Retained segments:
•Retained segments stored in GPGS-F buffer/pick simulation module.
•No selective erase.
• Image transformations : VXLAT
•Segment priorities : 4095

Raster facilities:
Fixed colour table. Length : 1

Special features:
•5 software generated linetypes.
•Hardware text in 1 size, 1 direction.
•Markers are generated by driver software.

Miscellaneous:

Driver 21

Device Driver Descriptions Last changed: Jan 18, 1996

8th Edition GPGS-F User’s Guide
Appendix E

No. 21 'TX14' Tektronix 4014-4015

Description:
Driver for Tektronix 4014-4015 storage tubes, and a lot of compatibles.
See also driver no. 20.

Device dependent options:
None

Maximum viewport size (NDC):
1.3 × 1.0

Default viewport size:
0.2804 meter

Spot size (fraction of default viewport):
1/3120

Interactive tools:
2 - Keyboard.
3 - Pick, 10 level namestack.
4 - Bell (ECHTOL).

201 - Graphic cursor.
Optional character typed, A1 format (REATOL).

202 - Optional tablet.

Retained segments:
•Retained segments stored in GPGS-F buffer/pick simulation module.
•No selective erase.
• Image transformations : VXLAT
•Segment priorities : 4095

Raster facilities:
Fixed colour table. Length : 1

Special features:
•5 hardware generated linetypes.
•Hardware text in 4 size, 1 direction.
•Markers are generated by driver software.

Miscellaneous:

Driver 22

Device Driver Descriptions Last changed: Jan 18, 1996

8th Edition GPGS-F User’s Guide
Appendix E

No. 22 'TX44' Tektronix 4114

Description:
Driver for Tektronix 4114 storage tube.

Device dependent options:
Option 3 : Coordinate mode, 10=10 bits, 12=12 bits (default).
Option 4 : If set to 1, the driver will not ask the terminal for segment status when

opening new segments and changing segment attributes.

Maximum viewport size (NDC):
1.3 × 1.0

Default viewport size:
0.267 meter

Spot size (fraction of default viewport):
1/3120

Interactive tools:
2 - Keyboard.
3 - Pick, 1 level namestack.
4 - Bell (ECHTOL).

201 - Graphic cursor.
Optional character typed, A1 format (REATOL).
Echo types: cursor, rubberband line, segment drag.

202 - Tablet. Optional button number as A1 format character (REATOL).
203 - Tablet stroke.

Escape tools :
920 - Direct access to terminal commands.

Retained segments:
•Retained segments stored in device.
•No selective erase.
• Image transformations : VXLAT
•Segment priorities : 4095

Raster facilities:
Fixed colour table. Length : 1

Special features:
•9 hardware generated linetypes.
•Hardware text in all sizes and directions.
•9 hardware generated markers, 1 size only.

Miscellaneous:
Additional information available.

Driver 33

Device Driver Descriptions Last changed: Jan 18, 1996

8th Edition GPGS-F User’s Guide
Appendix E

No. 33 'APOL' Apollo display

Description:
Driver for monochrome or colour display.
The driver interfaces Apollo GPR functions.

Device dependent options:
Option 1 : Operating mode.

= 0 (or DEVOPT not used) ➝ a separate graphic window is created.
=1 ➝ Borrow mode, should only be used if special needs.

Option 3 - 6 : Position of window borders in sequence left-right-bottom-top given
as percentage of the largest available square on the display.
(0,0) is lower left corner of display.
If not specified, installation dependent values are used.

Maximum viewport size (NDC):
Application dependent.

Default viewport size:
Application dependent.

Spot size (fraction of default viewport):
Application dependent.

Interactive tools:
3 - Pick, 10 level namestack.
4 - Bell (ECHTOL).

201 - Graphic cursor.
Optional character typed, A1 format (REATOL).
Mouse buttons return L/M/R for Left/Middle/Right.

Retained segments:
•Retained segments stored in GPGS-F buffer/pick simulation module.
•Selective erase.
• Image transformations : VXLAT
•Segment priorities : 4095

Raster facilities:
•Dynamic colour table. Length : display dependent.
•Polygon fill with solid colour.
•3 user definable patterns. Fixed size 32×32.
•Pixel array drawing.

Special features:
•8 hardware generated linetypes.
•Hardware text in 3 sizes, 1 direction.
•Hardware circle arcs.
•Markers are generated by driver software.

Miscellaneous:

Driver 35

Device Driver Descriptions Last changed: Jan 18, 1996

8th Edition GPGS-F User’s Guide
Appendix E

No. 35 'ICGM' ISO CGM generator

Description:
Driver for generating a CGM metafile according to ISO 8632-1 1987 (E).

Device dependent options:
Option 1 : Output unit number for the metafile.
Option 2 : CGM Scaling Mode. 0 ➝ Abstract, 1 ➝ Metric.
Option 3 : Type of CGM encoding.

2 ➝ Character (default)
3 ➝ Binary
4 ➝ Clear Text
according to ISO 8632-n-1987 (E), where n is the specified encoding.

Option 4 : Number of pixels in default viewport, X-direction. Default: 512.
Option 5 : Number of pixels in default viewport, Y-direction. Default: 512.

NOTE! Options 4 and 5 are relevant only when pixel related GPGS-F
routines are used (pixel array and patterned polygon fill).

Option 6 : ‘Page’ size in X-direction. If scaling mode (see option 2) is abstract, this
is specified as % of VDC (i.e. 50 means VDC 0.5).
If scaling mode is metric, the value is specified as cm’s.
Default : 142% if scaling mode is abstract, 27 if scaling mode is metric.

Option 7 : ‘Page’ size in Y-direction. Specified as option 6.
Default : 100% if scaling mode is abstract, 19 if scaling mode is metric.
NOTE! Options 6 and 7 define the mapping from GPGS-F to CGM

coordinates. In addition, the ‘page’ size given will be written
to the CGM file as arguments to the ‘VDC Extent’ command.
If one of the options is specified negative, the ‘page’ size will
be set to the absolute value of the option, and the ‘VDC Extent’
command will not be written to the file.

Option 8 : Default initialization of background/foreground colours.
0 ➝ Default background = black, default foreground = white,
1 ➝ Default background = white, default foreground = black.

Maximum viewport size (NDC):
As specified by options 6 and 7. Default: 1.42 × 1.0

Default viewport size:
As specified by options 6 and 7.
Default: 1.0 meter if scaling mode is abstract, 0.19 meter if scaling mode is metric.

Spot size (fraction of default viewport):
As specified by Options 4 and 5.

Interactive tools:
None

Retained segments:
None

Driver 35

Device Driver Descriptions Last changed: Jan 18, 1996

8th Edition GPGS-F User’s Guide
Appendix E

Raster facilities:
•Static/dynamic colour table. Length: 255.
•Polygon fill with all fill types.
•672 predefined patterns (24 geometric patterns repeated 28 times with different
colour combinations).

•Predefined hatch styles are left to the interpreter.
•8 user definable patterns, no size limitation.
•No user definable hatch styles.
•Pixel array drawing.

Special features:
All primitives and primitive attributes are mapped into CGM code and written
sequentially to the output file without checking.
If the value of a GPGS-F attribute does not fit into a reserved CGM index, those
GPGS-F codes are rather conveyed as the negative of its original value (CGM:
negative = implementation dependent).
Concatenated text is taken special care of.

Miscellaneous:
The application program must open the output file and give the unit number as
option 1.
Clear Text Encoding assumes that the file is opened as a standard Fortran
FORMATTED, SEQUENTIAL file (Unix users: use Fortran OPEN).
Character and Binary Encoding are written to unformatted sequential files (Unix
users: use NITTTY). While Character Encoding produces an ASCII file, Binary
Encoding will use the computer’s internal character codes.

Driver 40

Device Driver Descriptions Last changed: Jan 18, 1996

8th Edition GPGS-F User’s Guide
Appendix E

No. 40 'C600' CalComp 600

Description:
Driver for CalComp 600 series digitizers.
This is an input-only driver.

Device dependent options:
None

Maximum viewport size (NDC):
1.333 × 1.0

Default viewport size:
0.762 meter

Spot size (fraction of default viewport):
Installation dependent.
(1/7620, 1/3000, 1/3048)

Interactive tools:
201 - Locator position.

Optional ASCII value of button pressed, A1 format (REATOL).

Retained segments:
Not relevant.

Raster facilities:
Not relevant.

Special features:
Not relevant.

Miscellaneous:

Driver 41

Device Driver Descriptions Last changed: Jan 18, 1996

8th Edition GPGS-F User’s Guide
Appendix E

No. 41 'ALTK' Altek AC40

Description:
Driver for Altek AC40 digitizer.
This is an input-only driver.

Device dependent options:
None

Maximum viewport size (NDC):
Installation dependent.

Default viewport size:
Installation dependent.

Spot size (fraction of default viewport):
Installation dependent.
(1/1000 inch, 1/100 cm, 1/50 cm)

Interactive tools:
201 - Locator position.

Optional ASCII value of button pressed, A1 format (REATOL).

Retained segments:
Not relevant.

Raster facilities:
Not relevant.

Special features:
Not relevant.

Miscellaneous:

Driver 51

Device Driver Descriptions Last changed: Jan 18, 1996

8th Edition GPGS-F User’s Guide
Appendix E

No. 51 'HP48' Hewlett-Packard 2648

Description:
Driver for Hewlett-Packard 2648 raster terminal, and compatibles.

Device dependent options:
None

Maximum viewport size (NDC):
2.0 × 1.0

Default viewport size:
0.127 meter

Spot size (fraction of default viewport):
1/360

Interactive tools:
2 - Keyboard.
3 - Pick, 10 level namestack.
4 - Bell (ECHTOL).

201 - Graphic cursor. Optional character typed, A1 format (REATOL).
Echo types : cursor, rubberband line.

Retained segments:
•Retained segments stored in GPGS-F buffer/pick simulation module.
•Selective erase.
• Image transformations : VXLAT
•Segment priorities : 4095

Raster facilities:
Fixed colour table. Length : 1

Special features:
•9 hardware generated linetypes.
•Hardware text in 8 sizes, 4 directions.
•Markers are generated by driver software.

Miscellaneous:

Driver 53

Device Driver Descriptions Last changed: Jan 18, 1996

8th Edition GPGS-F User’s Guide
Appendix E

No. 53 'TX27' Tektronix 4027

Description:
Driver for Tektronix 4027 colour raster terminal.

Device dependent options:
None

Maximum viewport size (NDC):
1.43 × 1.65 (possible to draw in off-screen bitmap).

Default viewport size:
0.191 meter

Spot size (fraction of default viewport):
1/448

Interactive tools:
2 - Keyboard.
3 - Pick, 10 level namestack.
4 - Bell (ECHTOL).

201 - Graphic cursor. Optional character typed, A1 format (REATOL).

Retained segments:
•Retained segments stored in GPGS-F buffer/pick simulation module.
•Selective erase.
• Image transformations : VXLAT
•Segment priorities : 4095

Raster facilities:
•Dynamic colour table. Length : 7
•Polygon fill with solid colour.

Special features:
•9 hardware generated linetypes.
•Hardware text in 1 size, 1 direction.
•Hardware circle arcs.
•Markers are generated by driver software.

Miscellaneous:

Driver 54

Device Driver Descriptions Last changed: Jan 18, 1996

8th Edition GPGS-F User’s Guide
Appendix E

No. 54 'TX25' Tektronix 4025

Description:
Driver for Tektronix 4025 monochrome raster terminal.

Device dependent options:
None

Maximum viewport size (NDC):
1.43 × 1.65 (possible to draw in off-screen bitmap).

Default viewport size:
0.170 meter

Spot size (fraction of default viewport):
1/448

Interactive tools:
2 - Keyboard.
3 - Pick, 10 level namestack.
4 - Bell (ECHTOL).

201 - Graphic cursor. Optional character typed, A1 format (REATOL).

Retained segments:
•Retained segments stored in GPGS-F buffer/pick simulation module.
•Selective erase.
• Image transformations : VXLAT
•Segment priorities : 4095

Raster facilities:
Dynamic colour table. Length : 1

Special features:
•9 hardware generated linetypes.
•Hardware text in 1 size, 1 direction.
•Hardware circle arcs.
•Markers are generated by driver software.

Miscellaneous:

Driver 55

Device Driver Descriptions Last changed: Jan 18, 1996

8th Edition GPGS-F User’s Guide
Appendix E

No. 55 'TD22' Tandberg Data TDV 2215

Description:
Driver for Tandberg Data TDV 2215, using semigraphic character set.

Device dependent options:
None

Maximum viewport size (NDC):
1.06 × 1.0

Default viewport size:
0.190 meter

Spot size (fraction of default viewport):
1/150 × 1/75

Interactive tools:
2 - Keyboard.
3 - Pick, 10 level namestack.
4 - Bell (ECHTOL).

201 - Graphic cursor. Optional character typed, A1 format (REATOL).
Interrupt given by alpha key + <CR>

Retained segments:
•Retained segments stored in GPGS-F buffer/pick simulation module.
•Selective erase.
• Image transformations : VXLAT
•Segment priorities : 4095

Raster facilities:
•Fixed colour table. Length : 1
•Pixel array drawing.

Special features:
•Linetypes generated by driver software.
•Hardware text in 1 size, 4 directions.
•Markers are generated by driver software.

Miscellaneous:

Driver 57

Device Driver Descriptions Last changed: Jan 18, 1996

8th Edition GPGS-F User’s Guide
Appendix E

No. 57 'REGI' DEC VT125

Description:
Driver for DEC VT125 and other monochrome ReGIS terminals.
See also drivers 64 and 74.

Device dependent options:
None

Maximum viewport size (NDC):
1.6 × 1.0

Default viewport size:
0.150 meter

Spot size (fraction of default viewport):
1/768 × 1/240

Interactive tools:
2 - Keyboard, alpha cursor positioning possible.
3 - Pick, 10 level namestack.
4 - Bell (ECHTOL).

201 - Graphic cursor. Optional character typed, A1 format (REATOL).

Escape tools:
920 - Direct access to terminal commands.

Retained segments:
•Retained segments stored in GPGS-F buffer/pick simulation module.
•Selective erase.
• Image transformations: VXLAT
•Segment priorities: 4095

Raster facilities:
Dynamic colour table. Length: 3

Special features:
•10 hardware generated linetypes.
•Hardware text in limited number of sizes, 8 directions.
•Hardware circle arcs.
•Markers are generated by driver software.

Miscellaneous:

Driver 58

Device Driver Descriptions Last changed: Apr 9, 1996

8th Edition GPGS-F User’s Guide
Appendix E

No. 58 'TX42' Tektronix 4112

Description:
Driver for Tektronix 4112 monochrome raster terminal.

Device dependent options:
Option 3 : Coordinate mode, 10=10 bits, 12=12 bits (default).
Option 4 : If set to 1, the driver will not ask the terminal of segment status when

opening new segments and changing segment attributes.

Maximum viewport size (NDC):
1.333 × 1.0

Default viewport size:
0.188 meter (- dialogue area)

Spot size (fraction of default viewport):
1/480 (- dialogue area)

Interactive tools:
2 - Keyboard.
3 - Pick, 1 level namestack.
4 - Bell (ECHTOL).

201 - Graphic cursor. Optional character typed, A1 format (REATOL).
Echo types : cursor, rubberband line, segment drag.

202 - Tablet. Optional button number as A1 format character (REATOL).
203 - Tablet stroke.

Escape tools :
920 - Direct access to terminal commands.

Retained segments:
•Retained segments stored in device.
•Selective erase.
• Image transformations : VXLAT
•Segment priorities : 4095

Raster facilities:
•Dynamic colour table. Length : 1 or 7
•Polygon fill with solid colour.
•16 predefined patterns.
•125 user definable patterns. No size limitation.
•Pixel array drawing.

Special features:
•9 hardware generated linetypes.
•Hardware text in all sizes and directions.
•9 hardware generated markers, 1 size only.

Miscellaneous:
The driver will reserve the bottom 2 lines for dialogue area.
Additional information available.

Driver 59

Device Driver Descriptions Last changed: Apr 9, 1996

8th Edition GPGS-F User’s Guide
Appendix E

No. 59 'TX43' Tektronix 41xx/42xx

Description:
Driver for Tektronix colour raster terminals 4106-07-09-11-13-15-25, 4207-08-09.

Device dependent options:
Option 3 : Coordinate mode, 10=10 bits, 12=12 bits (default).
Option 4 : If set to 1, the driver will not ask the terminal of segment status when

opening new segments and changing segment attributes.

Maximum viewport size (NDC):
4115-25 : 1.250 × 1.0 Others : 1.333 × 1.0

Default viewport size:
4106-07, 4207-08-09 : 0.188 meter Others : 0.267 meter

Spot size (fraction of default viewport):
4115-25 : 1/1024 4111 : 1/768 Others : 1/480

Interactive tools:
2 - Keyboard.
3 - Pick, 1 level namestack.
4 - Bell (ECHTOL).

201 - Graphic cursor. Optional character typed, A1 format (REATOL).
Echo types : cursor, rubberband line, segment drag.

202 - Tablet. Optional button number as A1 format character (REATOL).
203 - Tablet stroke.

Escape tools :
920 - Direct access to terminal commands.

Retained segments:
•Retained segments stored in device.
•Selective erase.
• Image transformations : VXLAT
•Segment priorities : 4095

Raster facilities:
•Dynamic colour table. Length : 7, 15, 63 or 255.
•Polygon fill with solid colour.
•141 predefined patterns.
•33 user definable patterns (4111-15-25 only). No size limitation.
•Pixel array drawing.

Special features:
•9 hardware generated linetypes.
•Hardware text in all sizes and directions.

Shearing available with 4111-15-25.
•9 hardware generated markers, 1 size only.

Miscellaneous:
Additional information available.

Driver 62

Device Driver Descriptions Last changed: Apr 9, 1996

8th Edition GPGS-F User’s Guide
Appendix E

No. 62 'TX05' Tektronix 4105

Description:
Driver for Tektronix 4105 colour raster terminal.

Device dependent options:
Option 3 : Coordinate mode, 10=10 bits (default), 12=12 bits.

Maximum viewport size (NDC):
1.333 × 1.0

Default viewport size:
0.188 meter

Spot size (fraction of default viewport):
1/360

Interactive tools:
2 - Keyboard.
3 - Pick, 10 level namestack.
4 - Bell (ECHTOL).

201 - Graphic cursor. Optional character typed, A1 format (REATOL).

Escape tools :
920 - Direct access to terminal commands.

Retained segments:
•Retained segments stored in GPGS-F buffer/pick simulation module.
•Selective erase.
• Image transformations : VXLAT
•Segment priorities : 4095

Raster facilities:
•Dynamic colour table. Length : 7
•Polygon fill with solid colour.
•141 predefined patterns.
•Pixel array drawing with option 34 (optional pixel roms).

Special features:
•9 hardware generated linetypes.
•Hardware text in limited number of sizes, 4 directions.
•Markers are generated by driver software.

Miscellaneous:
Additional information available.

Driver 63

Device Driver Descriptions Last changed: Apr 9, 1996

8th Edition GPGS-F User’s Guide
Appendix E

No. 63 'TDGO' Tandberg Data Graphic Option

Description:
Driver for Tandberg Data TDV 2200 with graphic option.

Device dependent options:
None

Maximum viewport size (NDC):
1.379 × 1.0

Default viewport size:
0.190 meter

Spot size (fraction of default viewport):
1/522 × 1/336

Interactive tools:
2 - Keyboard.
3 - Pick, 10 level namestack.
4 - Bell (ECHTOL).

201 - Graphic cursor. Optional character typed, A1 format (REATOL).

Escape tools :
920 - Direct access to terminal commands.

Retained segments:
•Retained segments stored in GPGS-F buffer/pick simulation module.
•Selective erase.
• Image transformations : VXLAT
•Segment priorities : 4095

Raster facilities:
•Fixed colour table. Length : 1
•Polygon fill with solid colour.
•10 predefined patterns.
•9 user definable patterns. Fixed size 8×8.
•Pixel array drawing and readback.

Special features:
•5 hardware generated linetypes.
•Hardware text in 9 sizes, 4 directions.
•Hardware circle arcs.
•Markers are generated by driver software.

Miscellaneous:

Driver 64

Device Driver Descriptions Last changed: Apr 9, 1996

8th Edition GPGS-F User’s Guide
Appendix E

No. 64 'REGI' DEC VT240

Description:
Driver for DEC VT240 colour terminal.
See also drivers 57 and 74.

Device dependent options:
None

Maximum viewport size (NDC):
1.666 × 1.0

Default viewport size:
0.150 meter

Spot size (fraction of default viewport):
1/800 × 1/240

Interactive tools:
2 - Keyboard, alpha cursor positioning possible.
3 - Pick, 10 level namestack.
4 - Bell (ECHTOL).

201 - Graphic cursor. Optional character typed, A1 format (REATOL).

Escape tools :
920 - Direct access to terminal commands.

Retained segments:
•Retained segments stored in GPGS-F buffer/pick simulation module.
•Selective erase.
• Image transformations : VXLAT
•Segment priorities : 4095

Raster facilities:
Dynamic colour table. Length : 3

Special features:
•10 hardware generated linetypes.
•Hardware text in limited number of sizes, 8 directions.
•Hardware circle arcs.
•Markers are generated by driver software.

Miscellaneous:

Driver 65

Device Driver Descriptions Last changed: Apr 9, 1996

8th Edition GPGS-F User’s Guide
Appendix E

No. 65 'WW32' Westward 3219

Description:
Driver for Westward 3219 monochrome terminal.
See also driver 66.

Device dependent options:
None

Maximum viewport size (NDC):
1.306 × 1.0

Default viewport size:
0.280 meter

Spot size (fraction of default viewport):
1/1568

Interactive tools:
2 - Keyboard, alpha cursor positioning possible.
3 - Pick, 10 level namestack.
4 - Bell (ECHTOL).

201 - Graphic cursor. Optional character typed, A1 format (REATOL).
Echo types : cursor, rubberband line.

Retained segments:
•Retained segments stored in GPGS-F buffer/pick simulation module.
•Selective erase.
• Image transformations : VXLAT
•Segment priorities : 4095

Raster facilities:
•Fixed colour table. Length : 1
•Polygon fill with solid colour.
•4 user definable hatch styles.
•5 user definable patterns. Fixed size 8×8.
•Pixel array drawing.

Special features:
•6 hardware generated linetypes. Linewidth 1 (default) to 127 pixels.
•Hardware text in 12 sizes, 4 directions.
•Hardware circle arcs.
•13 hardware generated markers. 1 size only.

Miscellaneous:

Driver 66

Device Driver Descriptions Last changed: Apr 9, 1996

8th Edition GPGS-F User’s Guide
Appendix E

No. 66 'WW32' Westward 3220

Description:
Driver for Westward 3220 colour terminal.
See also driver 65.

Device dependent options:
None

Maximum viewport size (NDC):
1.306 × 1.0

Default viewport size:
0.280 meter

Spot size (fraction of default viewport):
1/784

Interactive tools:
2 - Keyboard, alpha cursor positioning possible.
3 - Pick, 10 level namestack.
4 - Bell (ECHTOL).

201 - Graphic cursor. Optional character typed, A1 format (REATOL).
Echo types : cursor, rubberband line.

Retained segments:
•Retained segments stored in GPGS-F buffer/pick simulation module.
•Selective erase.
• Image transformations : VXLAT
•Segment priorities : 4095

Raster facilities:
•Fixed colour table. Length : 15 or 255
•Polygon fill with solid colour.
•4 user definable hatch styles.
•5 user definable patterns. Fixed size 8×8.
•Pixel array drawing.

Special features:
•6 hardware generated linetypes. Linewidth 1 (default) to 127 pixels.
•Hardware text in 12 sizes, 4 directions.
•Hardware circle arcs.
•13 hardware generated markers. 1 size only.

Miscellaneous:

Driver 67

Device Driver Descriptions Last changed: Apr 9, 1996

8th Edition GPGS-F User’s Guide
Appendix E

No. 67 'TX29' Tektronix 3D terminals

Description:
Driver for Tektronix 3D terminals, 4129 and 4237.

Device dependent options:
None

Maximum viewport size (NDC):
1.25 × 1.0

Default viewport size:
0.280 meter

Spot size (fraction of default viewport):
1/1024

Interactive tools:
2 - Keyboard.
3 - Pick, 1 level namestack.
4 - Bell (ECHTOL).

201 - Graphic cursor. Optional character typed, A1 format (REATOL).
Echo types : cursor, rubberband line, segment drag.

202 - Tablet. Optional button number as A1 format character (REATOL).
203 - Tablet stroke.

Escape tools :
920 - Direct access to terminal commands.

Retained segments:
•Retained segments stored in device (as 3D segments).
•Selective erase.
• Image transformations : VXLAT
•Segment priorities : 4095

Raster facilities:
•Dynamic colour table. Length : 15, 255 or 4095
•Polygon fill with solid colour.
•141 predefined patterns (16 on 4129).
•125 user definable patterns. No size limitation.
•Pixel array drawing.

Special features:
•9 hardware generated linetypes.
•Hardware text in all sizes and directions. Shearing available.
•9 hardware generated markers, 1 size only.

Miscellaneous:
Utility routines for defining facets, light sources etc. are supplied with driver.
Additional information available.

Driver 68

Device Driver Descriptions Last changed: Apr 9, 1996

8th Edition GPGS-F User’s Guide
Appendix E

No. 68 'TPAZ' Tandberg Topaz 2400

Description:
Driver for Tandberg Topaz 2400 monochrome terminal.
See also driver 70.

Device dependent options:
None

Maximum viewport size (NDC):
1.333 × 1.0

Default viewport size:
0.200 meter

Spot size (fraction of default viewport):
1/600

Interactive tools:
2 - Keyboard.
3 - Pick, 10 level namestack.
4 - Bell (ECHTOL).

201 - Graphic cursor. Optional character typed, A1 format (REATOL).

Escape tools :
920 - Direct access to terminal commands.

Retained segments:
•Retained segments stored in GPGS-F buffer/pick simulation module.
•Selective erase.
• Image transformations : VXLAT
•Segment priorities : 4095

Raster facilities:
•Fixed colour table. Length : 3
•Polygon fill with solid colour.
•6 predefined hatch styles.
•48 predefined patterns.
•Pixel array drawing.

Special features:
•8 hardware generated linetypes.
•Hardware text in limited number of sizes, 8 directions.
•Hardware circle arcs.
•5 hardware generated markers.

Miscellaneous:

Driver 69

Device Driver Descriptions Last changed: Apr 9, 1996

8th Edition GPGS-F User’s Guide
Appendix E

No. 69 'WWGM' Westward Graphics Manager

Description:
Driver for Westward Graphics Manager, 3D mode.

Device dependent options:
Option 5 : If set to 1, the driver will operate in 2D mode.

Maximum viewport size (NDC):
1.25 × 1.0

Default viewport size:
0.280 meter

Spot size (fraction of default viewport):
Dependent on display attached.

Interactive tools:
2 - Keyboard.
3 - Pick, 1 level namestack.
4 - Bell (ECHTOL).

201 - Graphic cursor. Optional character typed, A1 format (REATOL).
Echo types : cursor, rubberband line.

Retained segments:
•Retained segments stored in device (as 3D segments).
•Selective erase.
• Image transformations : VXLAT
•Segment priorities : 4095

Raster facilities:
•Dynamic colour table. Length : 1, 15 or 255.
•Polygon fill with solid colour.

Special features:
•6 hardware generated linetypes.
•Hardware text in all sizes and directions.
•Hardware circle arcs.
•13 hardware generated markers, 1 size only.

Miscellaneous:

Driver 70

Device Driver Descriptions Last changed: Apr 9, 1996

8th Edition GPGS-F User’s Guide
Appendix E

No. 70 'TPAZ' Tandberg Topaz 2500

Description:
Driver for Tandberg Topaz 2500 colour terminal.
See also driver 68.

Device dependent options:
None

Maximum viewport size (NDC):
1.333 × 1.0

Default viewport size:
0.200 meter

Spot size (fraction of default viewport):
1/600

Interactive tools:
2 - Keyboard.
3 - Pick, 10 level namestack.
4 - Bell (ECHTOL).

201 - Graphic cursor. Optional character typed, A1 format (REATOL).

Escape tools :
920 - Direct access to terminal commands.

Retained segments:
•Retained segments stored in GPGS-F buffer/pick simulation module.
•Selective erase.
• Image transformations : VXLAT
•Segment priorities : 4095

Raster facilities:
•Dynamic colour table. Length : 15
•Polygon fill with solid colour.
•6 predefined hatch styles.
•240 predefined patterns.
•Pixel array drawing.

Special features:
•8 hardware generated linetypes.
•Hardware text in limited number of sizes, 8 directions.
•Hardware circle arcs.
•5 hardware generated markers.

Miscellaneous:

Driver 71

Device Driver Descriptions Last changed: Apr 9, 1996

8th Edition GPGS-F User’s Guide
Appendix E

No. 71 'RUBY' Tandberg 1200

Description:
Driver for Tandberg 1200 (RUBY) monochrome raster terminal.

Device dependent options:
Option 3 : = 1 ➝ The driver assumes the terminal is in 2115 mode, and will reset

this on exit.

Maximum viewport size (NDC):
1.35 × 1.0

Default viewport size:
0.2 meter

Spot size (fraction of default viewport):
1/530

Interactive tools:
2 - Keyboard.
3 - Pick, 10 level namestack.
4 - Bell (ECHTOL).

201 - Graphic cursor. Optional character typed, A1 format (REATOL).
Echo types : cursor, crosshair, rubberband line, rubberband rectangle.

Escape tools :
920 - Direct access to terminal commands.

Retained segments:
•Retained segments stored in GPGS-F buffer/pick simulation module.
•Selective erase.
• Image transformations : VXLAT
•Segment priorities : 4095

Raster facilities:
•Fixed colour table. Length : 3
•Polygon fill with solid colour.
•6 predefined hatch styles.
•48 predefined patterns.
•Pixel array drawing.

Special features:
•8 hardware generated linetypes.
•Hardware text in limited number of sizes, 1 direction.
•Hardware circle arcs.
• 5 hardware generated markers.

Miscellaneous:

Driver 72

Device Driver Descriptions Last changed: Apr 9, 1996

8th Edition GPGS-F User’s Guide
Appendix E

No. 72 'XWDW' X.11 interface

Description:
Driver interface to the X.11 window system.

Device dependent options:
Option 1: Start condition. If set to 1, the initial window will not be mapped to the

screen until explicitly done by VISDWI (page 21-6).
Option 2: Colour index to use for window background.
Options 3 - 6 : Position of window borders in sequence left-right-bottom-top,

relative to parent window. (0,0) is the lower left corner of the parent
window.

Option 7: Units of options 3-6.
= 0 or 10 ➝ percent of largest possible square on parent window.
= 1 or 11 ➝ pixels.
If 0 or 1, the X11 flag PPosition is set, if 1 or 11 the flag USPosition is
set (refer to X11 documentation).

Option 8: Controls setting of the X11 flags backing_store and save_under
(default: backing_store=Always, save_under=False).

Option 9: Initial background/foreground colours (default: white/black on
monochrome devices, black/white on colour devices).

Option 10: Number of read/write colour cells to allocate (default: the driver will
allocate as many as possible).
Should be set to the actual number needed to leave some colours for
other applications.

Option 11: Window border in pixels.
Option 12: Window border colour index.
Option 13: Close mode. If set to 1, the X11 routine XCloseDisplay will not be

called by RLSDEV.
Text option 1: Window name (shown in the window frame).
Text option 2: Icon name.

The options are described in full detail in separate documentation delivered with the
driver.

Maximum viewport size (NDC):
Application dependent.

Default viewport size:
Application dependent.

Spot size (fraction of default viewport):
Application dependent.

Interactive tools:
3 - Pick, 10 level namestack. Request and sample mode.
4 - Bell (ECHTOL).

201 - Graphic cursor. Request and sample mode. Echo modes ‘Rubberband Line’
and ‘Rubberband Rectangle’ are available in request mode.

401 to 405 - Mouse button status. Sample mode only.

Driver 72

Device Driver Descriptions Last changed: Apr 9, 1996

8th Edition GPGS-F User’s Guide
Appendix E

Retained segments:
•Retained segments stored in GPGS-F buffer/pick simulation module.
•Selective erase.
• Image transformations : VXLAT
•Segment priorities : 4095

Raster facilities:
•Fixed or dynamic colour table. Length : display dependent.
•Polygon fill with solid colour.
•24 predefined two-colour patterns. As the two colours used may be varied, the total
number of patterns is display dependent, computed as [maxcol∗(maxcol+1)∗ 12],
where maxcol is the max. number of foreground colours available.

•Pixel array drawing.

Special features:
•Up to 30 simultaneously active windows.
•10 hardware generated linetypes. Linewidth 1 (default) to 6 pixels.
•Hardware text in limited number of sizes, 1 direction, 16 fonts, 8 bits character set.
•Hardware circle arcs.
•Markers are generated by driver software.

Miscellaneous:
Additional information available. This gives detailed description of the device
options, graphic primitives and input facilities.

Driver 73

Device Driver Descriptions Last changed: Apr 9, 1996

8th Edition GPGS-F User’s Guide
Appendix E

No. 73 'TECH' ND Technostation

Description:
Driver for Norsk Data Technostation colour display.
The driver is interfaced to Leonardo software.

Device dependent options:
Option 3 : If not zero, deferral mode is set to ASAP (As Soon As Possible).

Default mode is ASTI (At Some TIme). See Leonardo documentation.

Maximum viewport size (NDC):
1.25 × 1.0

Default viewport size:
0.275 meter

Spot size (fraction of default viewport):
1/1024

Interactive tools:
3 - Pick, 10 level namestack.

201 - Graphic cursor.
Echo types : cursor, crosshair, rubberband line, rubberband rectangle.

Tablet is used for both pick and locator device.

Retained segments:
•Retained segments stored in GPGS-F buffer/pick simulation module.
•Selective erase.
• Image transformations : VXLAT
•Segment priorities : 4095

Raster facilities:
•Dynamic colour table. Length : 255
•Polygon fill with solid colour.
•Pixel array drawing.

Special features:
•6 hardware generated linetypes. Linewidth 1 (default) to 8 pixels.
•Hardware text in limited number of sizes, 4 direction.
•Hardware circle arcs.
•7 hardware generated markers.

Miscellaneous:

Driver 74

Device Driver Descriptions Last changed: Apr 9, 1996

8th Edition GPGS-F User’s Guide
Appendix E

No. 74 'REGI' DEC VT340

Description:
Driver for DEC VT340 colour terminal.
See also drivers 57 and 64.

Device dependent options:
None

Maximum viewport size (NDC):
1.666 × 1.0

Default viewport size:
0.150 meter

Spot size (fraction of default viewport):
1/800 × 1/480

Interactive tools:
2 - Keyboard, alpha cursor positioning possible.
3 - Pick, 10 level namestack.
4 - Bell (ECHTOL).

201 - Graphic cursor. Optional character typed, A1 format (REATOL).

Escape tools :
920 - Direct access to terminal commands.

Retained segments:
•Retained segments stored in GPGS-F buffer/pick simulation module.
•Selective erase.
• Image transformations : VXLAT
•Segment priorities : 4095

Raster facilities:
•Dynamic colour table. Length : 15
•Polygon fill with solid colour.

Special features:
•10 hardware generated linetypes.
•Hardware text in limited number of sizes, 8 directions.
•Hardware circle arcs.
•Markers are generated by driver software.

Miscellaneous:

Driver 75

Device Driver Descriptions Last changed: Apr 9, 1996

8th Edition GPGS-F User’s Guide
Appendix E

No. 75 'NOWS' Norsk Data OWS

Description:
Driver for Norsk Data OWS-55/85.

Device dependent options:
None.

Maximum viewport size (NDC):
1.333 × 1.0

Default viewport size:
0.172 meter

Spot size (fraction of default viewport):
1/360

Interactive tools:
2 - Keyboard
3 - Pick, 10 level namestack.
4 - Bell (ECHTOL).

201 - Graphic cursor. Optional character typed, A1 format (REATOL).

Escape tools:
920 - Direct access to terminal commands.

Retained segments:
•Retained segments stored in GPGS-F buffer/pick simulation module.
•Selective erase.
• Image transformations : VXLAT
•Segment priorities : 4095

Raster facilities:
•Fixed colour table. Length : 7
•Rectangle fill with solid colour.

Special features:
•6 hardware generated linetypes.
•Hardware text in 1 size, 1 direction
•9 hardware generated markers. 1 size only.

Miscellaneous:

Driver 80

Device Driver Descriptions Last changed: Apr 9, 1996

8th Edition GPGS-F User’s Guide
Appendix E

No. 80 'HPGL' Hewlett-Packard 7550 plotter

Description:
Driver for Hewlett-Packard 7550 plotter.

Device dependent options:
Option 3 : = 1 ➝ The driver will operate in ‘Write-Only Mode’.

Other values give ‘Read/Write Mode’.
Option 4 : Paper size when ‘Write-Only Mode’.

3 = A3 paper, 4 = A4 paper.
Option 6 : = 1 ➝ Default linepattern length will be 2% of distance between P1

and P2 (backwards compatibility).
Option 7 : = 1 ➝ Plot is rotated 90 degrees.

Maximum viewport size (NDC):
Write-Only Mode / A3 paper : 1.469 × 1.0
Write-Only Mode / A4 paper : 1.430 × 1.0
Read/Write Mode : Dependent on current Hard Clip Limits.

Default viewport size:
Write-Only Mode / A3 paper : 0.271 meter
Write-Only Mode / A4 paper : 0.190 meter
Read/Write Mode : Dependent on current Hard Clip Limits.

Spot size (fraction of default viewport):
Write-Only Mode / A3 paper : 1/10870
Write-Only Mode / A4 paper : 1/7600
Read/Write Mode : Dependent on current Hard Clip Limits.

Interactive tools:
Available in ‘Read/Write Mode’ only:

201 - Pen position.
Optional pen status, 1=Up, 0=Down (REATOL).

Escape tools:
912 - Pen speed and acceleration.
920 - Direct access to plotter commands.

Retained segments:
None

Raster facilities:
Fixed colour table. Length : 8

Special features:
•8 hardware generated linetypes. Pattern length is by default 5 mm. Specifying a 2-
digit linetype mn gives linetype n with pattern length m% of the distance between
P1 and P2 (see HP manual). Adding 100 to the linetype will draw lines using
complete pattern segments (negative linetypes in HPGL). Linepattern scalable.

•Hardware text in all sizes and directions. Shearing available.
•Hardware circle arcs.
•15 hardware generated markers.

Miscellaneous:
The plotter will normally use Xon/Xoff handshake.
Additional information available.

Driver 81

Device Driver Descriptions Last changed: Apr 9, 1996

8th Edition GPGS-F User’s Guide
Appendix E

No. 81 'CPCI' CalComp PCI controller

Description:
Driver for CalComp pen plotters with PCI controller. The driver is interfaced to
HCBS (Host Computer Basic Software). See also driver no. 13.

Device dependent options:
Option 1 : Passed as third argument to HCBS routine PLOTS.
Option 3 : Number of pens available.

Default: Installation dependent.
Option 4 : Paper width in cm’s.

Default: Installation dependent.

Maximum viewport size (NDC):
45.0 × 1.0

Default viewport size:
Installation / plotter dependent.

Spot size (fraction of default viewport):
Installation / plotter dependent.

Interactive tools:
None

Retained segments:
None

Raster facilities:
Fixed colour table. Length: Installation / plotter dependent.

Special features:
•9 hardware generated linetypes.
•Hardware text in (nearly) all sizes and directions.
•Hardware circle arcs.
•15 hardware generated markers.

Miscellaneous:
The driver assumes that HCBS uses cm’s as device units.
The following HCBS routines are called by the driver:

CIRCLE DASHS FONT NEWPEN
PLOT PLOTS SETCHR SYMBOL

Note that the HCBS routine TLRNCE is not used.

Driver 82

Device Driver Descriptions Last changed: Apr 9, 1996

8th Edition GPGS-F User’s Guide
Appendix E

No. 82 'CNA2' Canon LBP-8

Description:
Driver for Canon LBP-8 A2, II and III laser plotters.

Device dependent options:
None

Maximum viewport size (NDC):
1.406 × 1.0

Default viewport size:
0.197 meter

Spot size (fraction of default viewport):
1/5606

Interactive tools:
None

Retained segments:
None

Raster facilities:
•Fixed colour table. Length: 4 !!
1 = ‘Fine line’, 2 = ‘Semi-fine line’, 3 = Semi-thick line’, 4 = ‘Thick line’
Possible to draw with colour index 0 (erase mode).

•Polygon fill with solid colour.
•8 predefined patterns.
•2 user definable patterns. Fixed size 32×32.
•Pixel array drawing.

Special features:
•8 hardware generated linetypes.
•Hardware text in 1 size, 1 direction.
•Hardware circle arcs.
•9 hardware generated markers.

Miscellaneous:
On model LBP-8 A2, ‘Full Paint Mode’ must be set by device switches (switches
7 and 8 on SW4).

Driver 83

Device Driver Descriptions Last changed: Apr 9, 1996

8th Edition GPGS-F User’s Guide
Appendix E

No. 83 'HPGL' Hewlett-Packard 7440 plotter

Description:
Driver for Hewlett-Packard 7440 (ColorPro) plotter.

Device dependent options:
Option 3 : = 1 ➝ The driver will operate in ‘Write-Only Mode’. Other values

give ‘Read/Write Mode’.
Option 4 : ‘Write-Only Mode’ only:

= 1 ➝ The plotter is equipped with the ‘Graphics Enhancement
Cartridge’.

Option 7 : = 1 ➝ Plot is rotated 90 degrees.

Maximum viewport size (NDC):
1.424 × 1.0

Default viewport size:
1.191 meter

Spot size (fraction of default viewport):
1/7650

Interactive tools:
Available in ‘Read/Write Mode’ only:

201 - Pen position.
Optional pen status, 1=Up, 0=Down (REATOL).

Escape tools:
912 - Pen speed.
920 - Direct access to plotter commands.

Retained segments:
None

Raster facilities:
Fixed colour table. Length : 8

Special features:
•8 hardware generated linetypes. Pattern length is by default 5 mm. Specifying a 2-
digit linetype mn gives linetype n with pattern length m% of distance between P1
and P2 (see HP manual).

•Hardware text in all sizes and directions. Shearing available.
•Hardware circle arcs if ‘Graphics Enhancement Cartridge’.
•Markers are generated by driver software.

Miscellaneous:
The plotter will normally use Xon/Xoff handshake.
Additional information available.

Driver 84

Device Driver Descriptions Last changed: Apr 9, 1996

8th Edition GPGS-F User’s Guide
Appendix E

No. 84 'TA10' Wild Aviotab TA10

Description:
Driver for Wild Aviotab TA10.

Device dependent options:
Option 3 : = 1 ➝ The driver will operate in ‘Write-Only Mode’. Other values

give ‘Read/Write Mode’.
Option 4 : Number of pens (2 or 4) when ‘Write-Only Mode’.

If ‘Read/Write Mode’, the number of pens is read from the plotter.

Maximum viewport size (NDC):
Write-Only Mode : 1.0 × 1.0
Read/Write Mode : Requested from plotter.

Default viewport size:
Write-Only Mode : 1.0 meter
Read/Write Mode : Requested from plotter.

Spot size (fraction of default viewport):
Write-Only Mode : 1/50000
Read/Write Mode : Requested from plotter.

Interactive tools:
Available in ‘Read/Write Mode’ only:

201 - Pen position.

Escape tools:
912 - Pen speed and acceleration.

Retained segments:
None

Raster facilities:
Fixed colour table. Length: 2 or 4

Special features:
•6 hardware generated linetypes.
•Hardware text in all sizes and directions.
•Hardware circle arcs.
•15 hardware generated markers.

Miscellaneous:

Driver 85

Device Driver Descriptions Last changed: Apr 9, 1996

8th Edition GPGS-F User’s Guide
Appendix E

No. 85 'VCOL' Versatec colour raster plotters

Description:
Driver for Versatec colour raster plotters.
The driver is interfaced to Versaplot software.
See also driver no. 15

Device dependent options:
Option 3 : Passed as first argument to PLOTS.
Option 4 : Paper width in inches of actual plotter.

Default: Installation dependent.
Option 5 : Max. paper length in percent of paper width.

Default: 130.
Option 6 : Plotter density, dots per inch.

Default: Installation dependent.

Maximum viewport size (NDC):
Plotter dependent.

Default viewport size:
Plotter dependent.

Spot size (fraction of default viewport):
Plotter dependent.

Interactive tools:
None

Retained segments:
None

Raster facilities:
•Fixed colour table. Length: 8
•Polygon fill with solid colour.
•256 predefined patterns.
•10 user definable patterns. Fixed size 16×16

Special features:
•7 hardware generated linetypes.
Linewidth: 1 to 9 dots. Default: Installation dependent.

•Hardware text in all sizes and directions.
Character height/width ratio is constant.

•Hardware circle arcs.
•14 hardware generated markers.

Miscellaneous:
The Versaplot software has to be changed to use this driver.
Additional information available.

Driver 86

Device Driver Descriptions Last changed: Apr 9, 1996

8th Edition GPGS-F User’s Guide
Appendix E

No. 86 'CC81' CalComp-84 plotter

Description:
Driver for CalComp-84 A4-size pen plotter. The same plotter is available from other
vendors (Philips, Servogor and others?).
See also driver no. 19

Device dependent options:
None

Maximum viewport size (NDC):
1.435 × 1.0

Default viewport size:
0.200 meter

Spot size (fraction of default viewport):
1/2000

Interactive tools:
201 - Pen position.

Escape tools:
920 - Direct access to plotter commands.

Retained segments:
None

Raster facilities:
Fixed colour table. Length: 8

Special features:
•6 hardware generated linetypes. Pattern length is scaled by using a 2-digit linetype
‘nm’ where ‘m’ is the wanted linetype. Increasing ‘n’ increase the pattern length.

•Hardware text in all sizes and directions. Shearing available.
•Hardware circle arcs.
•9 hardware generated markers.

Miscellaneous:
The plotter will use Xon/Xoff handshake.
Action performed on CALL CLRDEV (Idev, Icod):

Icod = 0-99, paper must be changed manually.
Icod = 100, paper is advanced approx. 4 cm’s more than actually used.
Icod = 101-163, paper is advanced (Icod-100) cm’s.

Driver 87

Device Driver Descriptions Last changed: Apr 9, 1996

8th Edition GPGS-F User’s Guide
Appendix E

No. 87 'LASR' Laser printers, Tektronix mode

Description:
Driver for laser printers understanding Tektronix 4010/4014 vector commands.
May currently be used with DEC LN03 Plus and QMS Lasergrafix.

Device dependent options:
Option 3 : Printer type. 1 = LN03, 2 = QMS

Default: Installation dependent.
Option 4 : Code to generate, 4010 or 4014

Default: Installation dependent.

Maximum viewport size (NDC):
LN03 : 1.333 × 1.0
QMS : 1.312 × 1.0

Default viewport size:
0.195 meter

Spot size (fraction of default viewport):
LN03 : 1/3072
QMS : 1/3120

Interactive tools:
None

Retained segments:
None

Raster facilities:
Fixed colour table. Length: 1

Special features:
•Linetypes: 5 different hardware generated in 4014 mode,

generated by driver software in 4010 mode.
•Hardware text: 4 sizes, 1 direction in 4014 mode,

1 size, 1 direction in 4010 mode.
•Markers are generated by driver software.

Miscellaneous:

Driver 88

Device Driver Descriptions Last changed: Apr 9, 1996

8th Edition GPGS-F User’s Guide
Appendix E

No. 88 'CCOL' CalComp colour raster plotters

Description:
Driver for CalComp colour raster plotters.
The driver is interfaced to CalComp Basic Software.
Installation dependent parameter must be set corresponding to the unit of measure
used in CalComp Software (cm’s or inches).

Device dependent options:
Option 1 : Passed as third argument to PLOTS.
Option 3 : Passed as first argument to PLOTS.
Option 4 : Paper width in cm’s or inches (see also option 5).

Default: Installation dependent.
Option 5 : Factor to divide option 4 by to get cm’s or inches.

E.g.: option 4 = 725, option 5 = 10 ➝ size=72.5
Option 6 : Plotter density, dots per inch.

Default: Installation dependent.

Maximum viewport size (NDC):
10.0 × 1.0

Default viewport size:
Plotter dependent.

Spot size (fraction of default viewport):
Plotter dependent.

Interactive tools:
None

Retained segments:
None

Raster facilities:
•Fixed colour table. Length: 7
•Polygon fill with solid colour.
•105 predefined patterns.
•10 user definable patterns. Fixed size 32×32
•Pixel array drawing.

Special features:
•9 hardware generated linetypes.
Linewidth: 1 to 16 pixels. Default: Installation dependent.

•Hardware text in all sizes and directions, shearing available.
•Hardware circle arcs.
•15 hardware generated markers.

Miscellaneous:
Additional information available.

Driver 89

Device Driver Descriptions Last changed: Apr 9, 1996

8th Edition GPGS-F User’s Guide
Appendix E

No. 89 'TX45' Tektronix 4510 rasterizer

Description:
Driver for Tektronix 4510 rasterizer. Any hardcopy model may be used (consult
Tektronix documentation for details).

Device dependent options:
Option 3 : If set to 1, the driver will operate in ‘Write-Only Mode’. Other values

give ‘Read/Write Mode’.
Option 4 : Paper size when ‘Write-Only Mode’.

1=A1, 2=A2, 3=A3, 4=A4
5=D, 6=C, 7=B, 8=A (English)

Option 5 : Default linewidth in pixels (1-4). If not given, 1 is used.

Maximum viewport size (NDC):
1.307 × 1.0

Default viewport size:
Write-Only Mode:

A1 : 0.594 m, A2 : 0.420 m, A3 : 0.297 m, A4 : 0.210 m
D : 0.558 m, C : 0.431 m, B : 0.279 m, A : 0.215 m

Read/Write Mode: Dependent on device.

Spot size (fraction of default viewport):
Dependent on device.

Interactive tools:
Escape tools:

920 - Direct access to rasterizer commands.

Retained segments:
None

Raster facilities:
•Dynamic colour table. Length : 255
•Polygon fill with solid colour.
•141 predefined patterns.

Special features:
•9 hardware generated linetypes. Linewidth: 1 to 4 pixels.
•Hardware text in all sizes and directions. Shearing available.
•9 hardware generated markers.

Miscellaneous:
Additional information available.

Driver 90

Device Driver Descriptions Last changed: Apr 9, 1996

8th Edition GPGS-F User’s Guide
Appendix E

No. 90 'PSCR' PostScript generator

Description:
Driver generating PostScript files.

Device dependent options:
Option 2 : = 1 ➝ The PostScript command ‘showpage’ will not be output.
Option 3 : = 1 ➝ Generate colour commands instead of the default gray shades.
Option 4 : Specifies paper size and orientation.

0 = A4 Landscape, 1 = A4 Portrait,
2 = A3 Landscape, 3 = A3 Portrait

Option 5 : Raster resolution to be used by GPGS-F pixel related routines. Specified
in number of pixels per inch. Default 150.

Option 6 and 7: Paper size width and height in millimetres (overrides option 4).
Option 8 and 9: Offset from PostScript origin to GPGS-F origin in millimetres.

Maximum viewport size (NDC):
A4 Landscape : 1.425 × 1.0 A4 Portrait : 1.0 × 1.425
A3 Landscape : 1.423 × 1.0 A3 Portrait : 1.0 × 1.423

Default viewport size:
A4 : 0.195 m
A3 : 0.282 m

Spot size (fraction of default viewport):
Relevant for pixel related routines only.

A4 : 1/1156 A3 : 1/1668
(with default value of option 5).

Interactive tools:
Escape tools (see PostScript documentation for details):

931 - Iarr(1) = PostScript ‘line cap’ parameter (default 0)
932 - Iarr(1) = PostScript ‘line join’ parameter (default 0)

Farr(1) = PostScript ‘miter limit’ parameter (default 2.613)

Retained segments:
None.

Raster facilities:
•Static colour table. Length : 255
•Polygon fill with solid colour (or gray shades).
•24 predefined patterns for black/white mode, 672 for colour mode.
•5 user definable patterns. Max. size (width × height) : 1024
•Pixel array drawing.

Special features:
•9 hardware generated linetypes. Linewidth and linepattern scalable.
•Hardware text in all sizes and directions, shearing, 20 fonts, 8 bits character set.
•Hardware circle arcs.
•Markers are generated by driver software.

Miscellaneous:
Additional information available (see this for more detailed description of the
device dependent options).

Driver 91

Device Driver Descriptions Last changed: Apr 9, 1996

8th Edition GPGS-F User’s Guide
Appendix E

No. 91 'LASR' ND 720/730 laser printers

Description:
Driver for Norsk Data 720 and 730 laser printers.

Device dependent options:
None

Maximum viewport size (NDC):
1.429 × 1.0

Default viewport size:
0.193 meter

Spot size (fraction of default viewport):
1/7722

Interactive tools:
None

Retained segments:
None

Raster facilities:
Fixed colour table. Length: 1

Special features:
•8 hardware generated linetypes. Pattern length is by default 2% of the distance
P1-P2 (see ND documentation). Specifying a 2-digit linetype mn gives linetype n
with pattern length m%.

•Hardware text in all sizes and directions. Shearing available.
•Hardware circle arcs.
•Markers are generated by driver software.

Miscellaneous:

Driver 92

Device Driver Descriptions Last changed: Apr 9, 1996

8th Edition GPGS-F User’s Guide
Appendix E

No. 92 'GTEC' Graphtec pen plotters

Description:
Driver for Graphtec MP3000/4000 series, FP6202/6302, GP1002/1102.

Device dependent options:
Option 3 : = 1 ➝ The driver will operate in ‘Write-Only Mode’.

Other values give ‘Read/Write Mode’.
Option 4 : Paper size if ‘Write-Only Mode’, n=0-4 means An size.
Option 5 : Plotter model. One of: 3100/3200/3300/3400 / 4100/4200/4300/4400 /

(-)6202/(-)6302 / (-)1002/(-)1102. If positive numbers are given for the
last four models, the driver assumes roll paper is loaded, if negative
numbers are given, the driver assumes sheet paper is loaded.

Maximum viewport size (NDC):
Plotter dependent.

Default viewport size:
Plotter dependent.

Spot size (fraction of default viewport):
Plotter dependent.

Interactive tools:
Available in ‘Read/Write Mode’ only:

201 - Pen position.
Optional pen status mn, where m is pen number, n is up(1)/down(0).

Escape tools:
912 - Pen speed (Fda(1)=speed in cm/s).
920 - Direct access to plotter commands.

Retained segments:
None

Raster facilities:
Fixed colour table. Length : 8

Special features:
•8 hardware generated linetypes. Pattern length is by default 5 mm. Specifying a 2-
digit linetype mn gives linetype n with pattern length m∗2.5 mm.

•Hardware text in all sizes and directions. Shearing available.
•Hardware circle arcs.
•15 hardware generated markers.

Miscellaneous:
The driver assumes that the plotter uses Xon/Xoff handshake.
The programmable unit must be set to 0.1 mm.

Driver 93

Device Driver Descriptions Last changed: Apr 9, 1996

8th Edition GPGS-F User’s Guide
Appendix E

No. 93 'HPG2' HP-GL/2 generator

Description:
Driver generating HP-GL/2 commands. By default, PCL Dual-Context instructions
are included, see option 3 below.

Device dependent options:
Option 2 : = 1 ➝ Paper must be loaded manually.

Recognized by PCL devices only (see option 3).
Option 3 : = 1 ➝ Do not include Dual-Context PCL instructions.
Option 4 : Fixed paper sizes (see also options 6 and 7). Default is A4

1 - 4 = A1 - A4, 10 = A0
Option 5 : Type of device

0 = Black/white printer, 1 = Colour raster
2 = Colour vector (pen plotter) 3 = Monochrome raster

Option 6 : Paper width in mm’s (overrides option 4).
Option 7 : Paper height in mm’s (overrides option 4).
Option 8 : = 1 ➝ The plot is rotated 90 degrees.

Maximum viewport size (NDC):
Depending on options 4, 6 and 7.

Default viewport size:
Depending on options 4, 6 and 7.

Spot size (fraction of default viewport):
Depending on options 4, 6 and 7.

Interactive tools:
None

Retained segments:
None

Raster facilities:
•Fixed colour table with black/white printer (length 1) and colour vector (length 7),
static colour table with colour/monochrome raster (length 255).

•Polygon fill with solid colour.
•7 (black/white printer) or 49 (monochrome/colour raster) predefined patterns.
•8 user definable patterns. Max. size (width × height) : 4096

Special features:
•8 hardware generated linetypes. Pattern length is by default 5 mm. Specifying a 2-
digit linetype mn gives linetype n with pattern length m% of distance between P1
and P2 (see HP manual). Adding 100 to the linetype will draw lines containing one
or more complete pattern segments (negative linetypes in HP-GL/2).
Linewidth and linepattern scalable.

•Hardware text in all sizes and directions. Shearing available.
•Hardware circle arcs.
•Markers are generated by driver software.

Miscellaneous:
When device type 0 (black/white printer) is selected, colour indices 2 to 255 may
still be used with solid polygon fill to get different shades of gray.

Driver nn

Device Driver Descriptions Last changed: Apr 9, 1996

8th Edition GPGS-F User’s Guide
Appendix E

No. nn 'HPG2' HP-GL/2 generator

Routine Name Index Last changed: Apr 7, 1995

8th Edition GPGS-F User’s Guide PAGE F-1

Appendix F
Routine Name Index

Some commonly used argument names:
Angle : Angle in radians.
Dangle : Angle in degrees.
Ident : Picture segment identifier.
Idev : Identifier of a graphic device driver.
Ibuff : Primary buffer for segment storage.
Iunit : Unit number for picture library, range 1 to 99
Isw(tch) : On/off switch. 1=On, 0=Off.
Ivis : Linetype, range 0 to 255

0=invisible, 1=solid, 2=endpoint, 3=dotted, 4=dashed, 5=dash-dot.
Tmat : Transformation matrix 4×4 real array.

Common argument name start/end letters:
Ix... : Absolute Integer coordinates (e.g. Ix, Iyarr)
X... : Absolute Real coordinates (e.g. X, Yarr, Zpoint)
Idx... : Relative Integer coordinates (e.g. Idx, Idzarr)
Dx... : Relative Real coordinates (e.g. Dx, Dzarr)
I..arr : Integer array (e.g. Ixarr, Idxarr)
...arr : Real array (e.g. Dxarr, Farr)
...win : Window coordinate (e.g. Xwin)
...ndc : NDC coordinate (e.g. Xndc)
...usr : User coordinate (e.g. Xusr)

With some routines, more than one page number is given. The first one shows where the
general description of the routine is found, the second refers to a page where the routine
is used for a special purpose.

‘Old’ routines that are still part of the system for compatibility reasons, are shown with a
special font, as

COLOUR (Icol)

All arguments that return values to the application program are underlined, as
AWAIT (Time, Itool)

Routine Name Index Last changed: Apr 7, 1995

8th Edition GPGS-F User’s Guide PAGE F-2

Subroutine name (argument list) Page Number
Description of routine.

AUTOX (Mx, My) 10-2
Specify automatic value or index increment, 2D.

AUTOX3 (Mx, My, Mz) 10-2
Specify automatic value or index increment, 3D.

AWAIT (Time, Itool) 8-6
Wait for event input.

AXON (Xeye, Yeye, Zeye) 6-12
Set eye position for axonometric projection.

BACDEV (Idev) 19-1
Specify background device.

BACDRW 19-1
Draw copy of retained segments on background device.

BACVPT (Bvarr(1)) 19-2
Specify viewport for background device.

BFACEV (Isw) 22-7
Specify storage mode for back-facing polygons.

BGNBTC 16-3
Begin batch of retained segment operations.

BGNNAM (Iname) 20-2
Begin named graphic element group.

BGNPIC (Ident) 3-1
Create (open) a new picture segment.

BGNTRN 6-9
Push transformation matrix on internal stack.

BLICTL (Iswtch) 13-2
Control picture element blinking.

BLIPIC (Ident, Isw) 17-3
Control picture segment blinking.

CESCAP (Ichar) 7-2
Specify escape character for format control sequences.

CFONT (Ifont) 7-8
Select character font.

CFPROP (Isw) 7-12
Control proportional character spacing.

Routine Name Index Last changed: Apr 7, 1995

8th Edition GPGS-F User’s Guide PAGE F-3

Subroutine name (argument list) Page Number
Description of routine.

CHARA (Iarr(1), Ilth) 7-1
Draw character string, from A1 format data.

CHARC (Chstri) 7-1
Draw character string.

CHARE (Flpno, Length, Lfrac) 7-3
Draw a floating point number as a string, using E format.

CHARF (Flpno, Length, Lfrac) 7-3
Draw a floating point number as a string, using F format.

CHARI (Intno, Length) 7-3
Draw an integer number as a string.

CHARS (Iarr(1)) 7-1
Draw character string, from Hollerith data.

CIRAPR (Dist) 4-10
Specify circle approximation tolerance.

CIRC (Xc, Yc, Angle, Ivis) 4-7
Draw absolute 2D circle arc, with arc given as radians.

CIRC3 (Xc, Yc, Zc, Xp, Yp, Zp, Angle, Ivis) 4-7
Draw absolute 3D circle arc, with arc given as radians.

CIRCR (Dxc, Dyc, Angle, Ivis) 4-7
Draw relative 2D circle arc, with arc given as radians.

CIRCR3 (Dxc,Dyc,Dzc, Dxp,Dyp,Dzp, Angle, Ivis) 4-7
Draw relative 3D circle arc, with arc given as radians.

CIRD (Xc, Yc, Dangle, Ivis) 4-7
Draw absolute 2D circle arc, with arc given as degrees.

CIRD3 (Xc, Yc, Zc, Xp, Yp, Zp, Dangle, Ivis) 4-7
Draw absolute 3D circle arc, with arc given as degrees.

CIRDR (Dxc, Dyc, Dangle, Ivis) 4-7
Draw relative 2D circle arc, with arc given as degrees.

CIRDR3 (Dxc,Dyc,Dzc, Dxp,Dyp,Dzp, Dangle, Ivis) 4-7
Draw relative 3D circle arc, with arc given as degrees.

CJUST (Horiz, Vert) 7-7
Specify text string alignment.

CLANG (Ilang) 7-10
Select language for character encoding.

Routine Name Index Last changed: Apr 7, 1995

8th Edition GPGS-F User’s Guide PAGE F-4

Subroutine name (argument list) Page Number
Description of routine.

CLICTL (Iswtch) 2-4
Set clipping on/off.

CLRDEV (Idev, Iopt) 1-2
Clear graphic device.

CLRDWI (Idwi) 21-3
Clear device window.

CLRLIB (Iunit) 14-5
Clear and initialize picture library.

CLSTTY (Iunit) D-2
Close GPGS-F output file/channel.

COLOUR (Icol) 11-2
Set direct colour of picture elements.

COMP (Tmat(1,1)) 6-10
Multiply user and system transformation matrix.

COTHLS (Ind1, Hue(1), Rlight(1), Sat(1), Lth) 11-4
Change colour table, using the HLS colour model.

COTHSV (Ind1, Hue(1), Sat(1), Val(1), Lth) 11-5
Change colour table, using the HLS colour model.

COTIND (Ind) 11-2
Select colour table index for subsequent picture elements.

COTRGB (Ind1, Red(1), Green(1), Blue(1), Lth) 11-3
Change colour table, using the RGB colour model.

CROTA (Angle) 7-6
Set character rotation angle in radians.

CROTAD (Dangle) 7-6
Set character rotation angle in degrees.

CSHEA (Shear) 7-5
Set character shearing factor.

CSIZEL (Xlett, Ylett) 7-4
Set letter size in character space.

CSIZES (Xspace, Yspace) 7-4
Set character space size.

CURV (Fx, Fy, Plowl, Uppl, Step, Ivis) 10-4
Create 2D curve based on absolute functions.

Routine Name Index Last changed: Apr 7, 1995

8th Edition GPGS-F User’s Guide PAGE F-5

Subroutine name (argument list) Page Number
Description of routine.

CURV3 (Fx, Fy, Fz, Plowl, Uppl, Step, Ivis) 10-4
Create 3D curve based on absolute functions.

CURVR (Dfx, Dfy, Plowl, Uppl, Step, Ivis) 10-4
Create 2D curve based on relative functions.

CURVR3 (Dfx, Dfy, Dfz, Plowl, Uppl, Step, Ivis) 10-4
Create 3D curve based on relative functions.

DATATR (Iarr(1), Lthi, Farr(1), Lthf) 23-2
Inquire picture element attribute values.

DATBUF (Iarr(1), Lthi) 23-8
Inquire primary buffer status.

DATCBX (Tx, Ty, Strlen, Nlines, Cx, Cy, Bxarr(1), Byarr(1)) 7-13
Inquire box enclosing text string.

DATCHR (Iarr(1), Lthi, Farr(1), Lthf) 23-3
Inquire character attribute values.

DATCIR (Imod, Dist) 23-3
Inquire circle attribute values.

DATCLI (Iswtch) 23-3
Inquire clipping switch value.

DATCXA (Iarr(1), Ilth, Strlen, Nlines) 7-13
Inquire text extent, text given in A1 format.

DATCXC (Chstri, Strlen, Nlines) 7-13
Inquire text extent.

DATCXS (Iarr(1), Strlen, Nlines) 7-13
Inquire text extent, text given in Hollerith format.

DATDEV (Iarr(1), Lthi, Farr(1), Lthf) 23-4, 5-1
Inquire driver and device data.

DATDNO (Idev) 23-1
Inquire current active device number.

DATDWI (Idwi, Iarr(1), Lthi, Farr(1), Lthf) 21-12
Inquire device window size.

DATFNU (Ifontu, Ierru) 23-7
Inquire Fortran unit numbers used internally.

DATHID (Iarr(1), Lthi) 23-7
Inquire HLHS module status.

Routine Name Index Last changed: Apr 7, 1995

8th Edition GPGS-F User’s Guide PAGE F-6

Subroutine name (argument list) Page Number
Description of routine.

DATLIB (Iarr(1), Lthi) 23-8
Inquire picture library status.

DATMAR (Size) 23-4
Inquire marker size.

DATPAR (Ipolsz, Icros, Ipatsz) 23-7
Inquire value of installation dependent parameters.

DATPIX (Xwlow, Ywlow, Idimx, Indarr(1,1), Nx, Ny, Istat) 12-15
Readback pixel array from device.

DATPNO (Ident) 23-1
Inquire identifier of current open picture segment.

DATPOS (Xpos, Ypos, Zpos) 23-2
Inquire current position, transformed user coordinates.

DATUSR (Xusr, Yusr, Zusr) 23-2
Inquire current position, user coordinates.

DATVP (Varr3(1)) 23-2
Inquire current viewport limits.

DATWIN (Warr3(1)) 23-2
Inquire current window limits.

DEFER (Idefer, Ialdev) 16-2
Set deferral mode.

DELPIC (Ident) 14-7, 16-4
Delete picture segment.

DEPCTL (Iswtch) 13-2
Control depth modulation.

DEVOPT (Iarr(1), IIthi, Rarr(1), Ilthr, Carr(1), Ilthc) 1-4
Set device or device window options.

DSABLE (Itool) 8-5
Disable tool for event input.

ECHCTL (Itool, Istat) 8-8
Set echo on/off.

ECHTOL (Itool, Iarr(1), Lthi, Farr(1), Lthf) 8-8
Select echo and/or feedback type.

ECHTXC (Itool, Chstri) 8-11
Echo a text string.

Routine Name Index Last changed: Apr 7, 1995

8th Edition GPGS-F User’s Guide PAGE F-7

Subroutine name (argument list) Page Number
Description of routine.

ECHVP (Itool, Varr(1)) 8-8
Set echo viewport.

ELIP (Xcn, Ycn, Xrad, Yrad, Ang0, Angle, Rotang, Ivis) 4-11
Create a 2D elliptic arc.

ENABLE (Itool) 8-5
Enable tool for event input.

ENDBTC 16-3
End batch of retained picture segment operations.

ENDNAM 20-2
End named graphic element group.

ENDPIC 3-1
Close picture segment.

ENDTRN 6-9
Pop transformation matrix from internal stack.

ERFILE (Ifile) 24-3
Specify output file number for error messages.

ERROUT (Iarr) 24-4
System or application supplied error handling routine.

FLUSHE (Itool) 8-5
Flush event queue for tool.

GETBUT (Istat) 8-7
Get button event report.

GETHIT (Maxnam, Namarr(1), Lennam) 8-6
Get pick event report.

GETLOC (Xndc, Yndc) 8-7
Get locator event report.

GETTXC (Chstri, Length) 8-6
Get text event report.

GETVAL (Value) 8-7
Get valuator event report.

GPGS 1-1
Initialize the GPGS-F system.

GPGSOF 24-5
Close down GPGS-F.

Routine Name Index Last changed: Apr 7, 1995

8th Edition GPGS-F User’s Guide PAGE F-8

Subroutine name (argument list) Page Number
Description of routine.

GUFSCL (Iunit, Istat) 14-6
Close picture library file.

GUFSOP (Iunit, Fname, Nrec, Fstat, Istat) 14-5
Open picture library file.

HIDCTL (Isw) 22-2
Control storage of polygons/lines in HLHS module.

HITPOS (Xndc, Yndc) 8-6
Get pick event position.

HTCDEF (Index, Angle) 12-8
Define hatch table entry.

IDEN 6-1
Set transformation matrix to identity.

INPDEV (Idev) 8-11
Select device for interaction.

INPDWI (Idwi, Isw) 21-13
Specify device window(s) to receive input.

INQDRV (Idev, Istat) 1-5
Inquire availability of device driver.

INQDWI (Idwi, Iwsid, Ichg) 21-9, 21-10
Inquire device window identifier and change mode.

INQGPV (Ibasv, Isubv) 1-6
Inquire GPGS-F version numbers.

INSCOL (Imod) 15-2
Select colour index of inserted pseudo segment.

INSERT (Ident) 15-1
Insert pseudo segment form primary buffer.

INSHID (Iopts(1), Length) 22-3
Insert result of HLHS computation.

INSLIB (Iunit, Ident) 15-2
Insert pseudo segment from picture library.

Index = INWAIT (Time, Ied(1), Iarr(1), Lthi, Farr(1), Lthf) 8-13
Wait for input from tool(s).

LINE (X, Y, Ivis) 4-2
Create 2D line from absolute floating point coordinates.

Routine Name Index Last changed: Apr 7, 1995

8th Edition GPGS-F User’s Guide PAGE F-9

Subroutine name (argument list) Page Number
Description of routine.

LINE3 (X, Y, Z, Ivis) 4-2
Create 3D line from absolute floating point coordinates.

LINER (Dx, Dy, Ivis) 4-2
Create 2D line from relative floating point coordinates.

LINER3 (Dx, Dy, Dz, Ivis) 4-2
Create 3D line from relative floating point coordinates.

LINI (Ix, Iy, Ivis) 4-2
Create 2D line from absolute integer coordinates.

LINI3 (Ix, Iy, Iz, Ivis) 4-2
Create 3D line from absolute integer coordinates.

LINIR (Idx, Idy, Ivis) 4-2
Create 2D line from relative integer coordinates.

LINIR3 (Idx, Idy, Idz, Ivis) 4-2
Create 3D line from relative integer coordinates.

LINWID (Wscal) 13-1
Set linewidth scaling factor.

LOGERR (Iarr(1)) 24-5
Print error message.

LPGPGS (Ivis) 9-3
Set line representation to single stroke line.

LPHOTD (Ivis, Width, Delta) 9-4
Set line representation to hot-dog line.

LPOFFS (Ivis, Offset) 9-4
Set line representation to offset line.

LPPARA (Ivis, Width, Delta) 9-3
Set line representation to parallel lines.

LPPATT (Ivis, Itypar(1), Rlenar(1), Length) 9-2
Define line pattern.

LPSCAL (Scale) 4-2
Set scaling factor of driver/hardware line pattern.

LPSCTL (Isw) 20-3
Control detectability of picture elements.

LPSET (Cid, Value) 9-5
Set options for application defined line representation.

Routine Name Index Last changed: Apr 7, 1995

8th Edition GPGS-F User’s Guide PAGE F-10

Subroutine name (argument list) Page Number
Description of routine.

LPSPIC (Ident, Isw) 20-4
Set detectability of picture segment.

MARKER (Imar) 4-12
Create centred marker.

MODTRN (Imod) 6-16
Set transformation modification mode.

MOVDWI (Idwi, Ixpos, Iypos, Imod, Icorn) 21-7
Set position of device window.

MSGLEV (Ilevel) 24-2
Select error message format.

MSIZE (Size) 4-12
Specify marker size.

NAME (Iname) 20-1
Set name of individual picture element.

NDCWIN (Xndc, Yndc, Zndc, Xwin, Ywin, Zwin) 8-14
Convert from NDC to window coordinates.

NITBUF (Iarr(1), Length) 14-3
Define array as primary picture segment buffer.

NITDEV (Idev) 1-2
Initialize graphic device.

NITDWI (Idwi, Ityp, Iref) 21-2
Create new device window, or link to existing window.

NITHID 22-2
Initialize HLHS module.

NITLIB (Iunit) 14-5
Define file as picture library.

NITOPT (Iarr(1), Ilth) 1-5
Set device options.

Iunit = NITTTY (Idev, Filename) D-2
Open file/channel for GPGS-F output.

PATDEF (Index, Icarr(1,1), Nx, Ny) 12-7
Define pattern table entry.

PERS (Xeye, Yeye, Zeye) 6-12
Set eye position for perspective projection.

Routine Name Index Last changed: Apr 7, 1995

8th Edition GPGS-F User’s Guide PAGE F-11

Subroutine name (argument list) Page Number
Description of routine.

PIREF (Xref, Yref) 12-9
Set reference point for patterns and hatch lines.

PISIZ (Dx, Dy, Hdist) 12-8
Set pattern size and/or hatch line distance.

PITYP (Iptyp) 12-5
Select polygon texture type.

PIXARR (Width, Height, Idimx, Indarr(1,1), Nx, Ny) 12-12
Create pixel array.

POLY (Xarr(1), Yarr(1), Lth, Itype) 12-3
Create 2D polygon from absolute coordinates.

POLY3 (Xarr(1), Yarr(1), Zarr(1), Lth, Itype) 12-3
Create 3D polygon from absolute coordinates.

POLYR (Dxarr(1), Dyarr(1), Lth, Itype) 12-3
Create 2D polygon from relative coordinates.

POLYR3 (Dxarr(1), Dyarr(1), Dzarr(1), Lth, Itype) 12-3
Create 3D polygon from relative coordinates.

POPDWI (Idwi, Isw) 21-6
Push/pop device window.

PRCIND (Ind) 12-4
Select colour index for polygon perimeter.

PRIPIC (Ident, Ipri) 17-3
Set picture segment priority.

RDRDWI (Idwi) 21-10
Redraw all visible segments in device window.

READWI (Idwi) 21-13
Inquire device window receiving last input.

REATOL (Itool, Iarr(1), Lthi, Farr(1), Lthf) 8-12
Read additional input data from tool.

REDRAW 16-4
Redraw all visible segments.

REFER (Ident) 15-5
Insert symbolic reference to pseudo segment.

REQBUT (Itool, Ibutno, Istat) 8-3
Request button tool input.

Routine Name Index Last changed: Apr 7, 1995

8th Edition GPGS-F User’s Guide PAGE F-12

Subroutine name (argument list) Page Number
Description of routine.

REQHIT (Itool, Maxnam, Namarr(1), Lennam) 8-3
Request pick tool input.

REQLOC (Itool, Xndc, Yndc) 8-2
Request locator tool input.

REQTXC (Itool, Chstri, Length) 8-3
Request text tool input.

REQVAL (Itool, Value) 8-3
Request valuator tool input.

RESPIC (Idold, Idnew) 14-6
Copy picture segment from picture library to primary buffer.

RETAIN (Iswtch) 16-1
Select whether picture segments are to be retained.

RLSBUF (Iarr(1)) 14-3
Release primary picture segment buffer.

RLSDEV (Idev) 1-2
Release device.

RLSDWI (Idwi) 21-3
Release device window.

RLSLIB (Iunit) 14-6
Release picture library file.

ROTA (Angle, Iaxis) 6-5
Specify rotation, angle in radians.

ROTAD (Dangle, Iaxis) 6-5
Specify rotation, angle in degrees.

RPADWI (Idwi, Iref, Ireftp) 21-8
Reparent device window.

RSZDWI (Idwi, Iwid, Ihei, Imod) 21-8
Resize device window.

SAVMOD (Iswtch) 23-3
Inquire transformation modification mode.

SAVPIC (Idold, Idnew) 14-6
Copy picture segment from primary buffer to picture library.

SAVTRN (Tmat(1,1)) 6-10
Save system transformation matrix in application array.

Routine Name Index Last changed: Apr 7, 1995

8th Edition GPGS-F User’s Guide PAGE F-13

Subroutine name (argument list) Page Number
Description of routine.

SCAL (Scale, Iaxis) 6-4
Specify scaling transformation.

SELBUF (Iarr(1)) 14-3
Select primary picture segment buffer.

SELDEV (Idev) 1-2
Select output device.

SELDWI (Idwi) 21-5
Select output device window.

SELLIB (Iunit) 14-5
Select picture library.

SETFNU (Ifontu, Ierru) 7-9, 24-4
Set Fortran unit numbers to be used by GPGS-F.

SHEA (Shear, Iaxis1, Iaxis2) 6-6
Specify shearing transformation.

SMPBUT (Itool, Ibutno, Istat) 8-5
Sample button tool.

SMPHIT (Itool, Maxnam, Namarr(1), Lennam) 8-4
Sample pick tool.

SMPLOC (Itool, Xndc, Yndc) 8-5
Sample locator tool.

SMPTXC (Itool, Chstri, Length) 8-4
Sample text tool.

SMPVAL (Itool, Value) 8-4
Sample valuator tool.

SOFCHA (Isw) 7-6
Select software/hardware text generation.

SOFCIR (Isw) 4-10
Select software/hardware circle generation.

SOFPIX (Isw) 12-12
Select software/hardware pixel array generation.

SOFPOL (Iqual) 12-6
Select textured polygon drawing quality.

TABI (Ixarr(1), Iyarr(1), Lthi, Ivis) 10-1
Create 2D polyline from absolute integer coordinates.

Routine Name Index Last changed: Apr 7, 1995

8th Edition GPGS-F User’s Guide PAGE F-14

Subroutine name (argument list) Page Number
Description of routine.

TABI3 (Ixarr(1), Iyarr(1), Izarr(1), Lthi, Ivis) 10-1
Create 3D polyline from absolute integer coordinates.

TABIR (Idxarr(1), Idyarr(1), Lthi, Ivis) 10-1
Create 2D polyline from relative integer coordinates.

TABIR3 (Idxarr(1), Idyarr(1), Idzarr(1), Lthi, Ivis) 10-1
Create 3D polyline from relative integer coordinates.

TABL (Xarr(1), Yarr(1), Lthi, Ivis) 10-1
Create 2D polyline from absolute floating point coordinates.

TABL3 (Xarr(1), Yarr(1), Zarr(1), Lthi, Ivis) 10-1
Create 3D polyline from absolute floating point coordinates.

TABLR (Dxarr(1), Dyarr(1), Lthi, Ivis) 10-1
Create 2D polyline from relative floating point coordinates.

TABLR3 (Dxarr(1), Dyarr(1), Dzarr(1), Lthi, Ivis) 10-1
Create 3D polyline from relative floating point coordinates.

TRAN (Tmat(1,1)) 6-10
Replace system transformation matrix.

UPDAT (Iregen) 16-3, 1-5
Flush retained segment operations.

USRWIN (Xusr, Yusr, Zusr, Xwin, Ywin, Zwin) 8-14
Convert from user to window coordinates.

VANS (Xvan, Yvan, Zvan) 6-7
Set vanishing point for perspective projection.

VIDEN (Ident) 18-1
Reset image transformation.

VISDWI (Idwi, Isw) 21-6
Set device window visibility.

VISPIC (Ident, Isw) 17-1
Set picture segment visibility.

VPORT (V2arr(1)) 2-3
Set 2D viewport boundaries.

VPORT3 (V3arr(1)) 2-3
Set 3D viewport boundaries.

VXLAT (Ident, Xdisp, Ydisp) 18-1
Set picture segment position, 2D.

Routine Name Index Last changed: Apr 7, 1995

8th Edition GPGS-F User’s Guide PAGE F-15

Subroutine name (argument list) Page Number
Description of routine.

VXLAT3 (Ident, Xdisp, Ydisp, Zdisp) 18-1
Set picture segment position, 3D.

WINDW (W2arr(1)) 2-2
Set 2D window boundaries.

WINDW3 (W3arr(1)) 2-2
Set 3D window boundaries.

WINNDC (Xwin, Ywin, Zwin, Zndc, Yndc, Zndc) 8-14
Convert from window to NDC coordinates.

WINUSR (Invert, Xwin, Ywin, Zwin, Xusr, Yusr, Zusr) 8-14
Convert from window to user coordinates.

WRITOL (Iarr(1), Lthi, Farr(1), Lthf) 8-13
Select echo and/or feedback type.

XLAT (Xdisp, Ydisp) 6-3
Specify 2D translation.

XLAT3 (Xdisp, Ydisp, Zdisp) 6-3
Specify 3D translation.

Routine Name Index Last changed: Apr 7, 1995

8th Edition GPGS-F User’s Guide PAGE F-16

Routine Number Index Last changed: Apr 7, 1995

8th Edition GPGS-F User’s Guide PAGE G-1

Appendix G
Routine Number Index

This appendix lists the GPGS-F routine numbers used in short format error messages
(described in Chapter 24). The routines of the GRAPHISTO and SURRENDER
packages are also listed, as well as in the GRAPHISTO and SURRENDER user manuals.

G.1 GPGS-F Routines
1 NITDEV
2 RLSDEV
3 SELDEV
4 CLRDEV
5 INQDRV

6 NITBUF
7 RLSBUF
8 SELBUF

10 NITLIB
11 RLSLIB
12 SELLIB
13 CLRLIB

14 NITOPT

15 UPDAT
16 DEFER
17 GPGS
18 REDRAW

19 DEVOPT

20 WINDW
21 WINDW3

22 CLICTL

23 MODTRN
24 TRAN
25 COMP

26 IDEN
27 XLAT
28 XLAT3
29 ROTA
30 SCAL
31 SHEA
32 VANS
33 ROTAD

34 SAVTRN
35 BGNTRN
36 ENDTRN

37 PERS
38 AXON

39 SAVMOD

40 VPORT
41 VPORT3

42 VXLAT
43 VXLAT3
47 VIDEN

50 MSGLEV
51 ERFILE
52 SETFNU
53 INQGPV

60 BGNPIC
61 ENDPIC

62 PRIPIC
63 BLIPIC
64 DELPIC
65 VISPIC
66 LPSPIC

67 SAVPIC
68 RESPIC

80 INWAIT
81 REATOL
82 WRITOL

90 SOFCHA
91 CESCAP

93 AUTOX
94 AUTOX3

96 SOFCIR
97 CIRAPR

100 LINI3
101 LINIR3
102 LINI
103 LINIR
104 LINE3
105 LINER3
106 LINE
107 LINER

108 CIRC3
109 CIRCR3
110 CIRC
111 CIRCR
112 CIRD3
113 CIRDR3
114 CIRD
115 CIRDR

120 TABI3
121 TABIR3
122 TABI
123 TABIR
124 TABL3
125 TABLR3
126 TABL
127 TABLR

128 CURV3
129 CURVR3
130 CURV
131 CURVR

132 POLY3
133 POLYR3
134 POLY
135 POLYR

Routine Number Index Last changed: Apr 7, 1995

8th Edition GPGS-F User’s Guide PAGE G-2

140 CHARS
141 CHARA
142 CHARI
143 CHARE
144 CHARF
145 CHARC

146 MARKER

160 REFER
161 INSERT
162 INSLIB
163 INSCOL

166 RETAIN

167 BGNBTC
168 ENDBTC

170 BACDEV
171 BACVPT
172 BACDRW

180 LPSCTL
181 BLICTL
182 DEPCTL
184 COLOUR

185 NAME
186 BGNNAM
187 ENDNAM

188 LINWID
189 LPSCAL

190 CSIZES
191 CSIZEL

192 CSHEA
193 CROTA
194 CROTAD
195 CJUST

196 CFONT
197 CLANG

198 MSIZE

199 CFPROP

200 COTIND
201 COTRGB
202 COTHLS
203 COTHSV

208 SOFPOL
209 PATDEF
210 HTCDEF

211 PITYP
212 PISIZ
213 PIREF

214 SOFPIX
215 PIXARR

216 PRCIND

220 REQTXC
221 REQHIT
222 REQVAL
223 REQLOC
224 REQBUT

225 SMPTXC
226 SMPHIT
227 SMPVAL
228 SMPLOC
229 SMPBUT

230 GETTXC
231 GETHIT
232 GETVAL
233 GETLOC
234 GETBUT
235 HITPOS

236 ENABLE
237 DSABLE
238 AWAIT
239 FLUSHE
240 INPDEV

241 ECHCTL
242 ECHTOL
243 ECHTXC
244 ECHVP

245 READWI

247 NDCWIN
248 WINNDC
249 WINUSR
250 USRWIN

260 NITHID
261 HIDCTL
262 INSHID
263 BFACEV

270 LPPATT
271 LPGPGS
272 LPPARA
273 LPOFFS
274 LPHOTD
275 LPSET

280 ELIP

300 DATDEV
301 DATDNO
302 DATPNO
303 DATBUF
304 DATLIB
305 DATVP
306 DATWIN
310 DATATR
311 DATCIR
312 DATCLI
313 DATCHR
314 DATCXA
315 DATCXS
316 DATCXC
317 DATCBX
318 DATMAR
319 DATPOS
320 DATUSR
321 DATPIX
322 DATHID
323 DATPAR
324 DATFNU

400 NITDWI
401 RLSDWI
402 CLRDWI
403 SELDWI

404 VISDWI
405 RDRDWI
406 POPDWI
407 MOVDWI
408 RSZDWI
409 RPADWI

410 INQDWI
411 DATDWI
412 INPDWI

Routine Number Index Last changed: Apr 7, 1995

8th Edition GPGS-F User’s Guide PAGE G-3

G.2 GRAPHISTO Routines
600 DEFPAG
601 DEFAX
602 DEFAXI

603 SELAX

605 AXANOT
606 AXTPOS
608 AXREXP

609 PAGSIZ

610 AXIS

611 AXLAB
612 AXILAB
613 AXGLAB

614 AXTIT

615 AXTIC
616 AXGTIC

617 AXGRD
618 AXGGRD

619 AXDLAB
620 AXMLAB

621 PLOTAB
622 PLOSMO
623 PLOCUR
624 PLOMAR

625 PLOLIN

626 PLOBAR
627 HACBAR

628 AUTIND
629 AUTINC

630 HEADNG
631 TABLEG
632 BARLEG
633 FRAME

634 LEGBOX
635 FILLEG

636 PFRAME

637 PLOCSP
638 LSQFIT
639 PLOFX

640 MIMATB
641 MIMACV

642 NICLAB
643 NIGLAB
644 NICFMT
645 NIGFMT

646 UNDEF

647 FILTAB
648 HACTAB

649 FATLIN

650 PLOPAG
651 PAGPLO
652 PLOTRN

653 BLNKNG
654 BLGID
655 BLONOF
656 BLAREC
657 BLAPOL
658 BLACIR
659 BLAARC

660 DEFPIE
661 PIESEG

662 FILREC

663 BLAFRM
664 BLDEL

665 PIEDEF
666 PIESET

667 HACSEG
668 FILSEG

669 DATSEG

670 DEFAXA
671 DEFAXX

672 AXALAB
673 AXXLAB

674 PLBAR
675 PLHIS

676 PLOREC

677 PLOSTP

678 BARGRP

679 HACDEN

680 FLBAR
681 FLHIS
682 FILBAR

683 BAR3D

684 BARSET
685 HIGSET

686 CLPPLO

687 HIGDAT

688 PLOBAK

689 HACREP

690 TABCHA
691 SMOCHA
692 HISCHA
693 PIECHA

694 PLARRW
695 PLTEXT

696 DATBLA

699 MMLENG

Routine Number Index Last changed: Apr 7, 1995

8th Edition GPGS-F User’s Guide PAGE G-4

G.3 SURRENDER Routines
700 PLOMA3

701 M3BOX
702 M3CON
703 M3PTS

704 PLOMAC
705 PLOMA4

706 M3TRN

707 M3DRW
708 M3LIN

709 M3CON4

710 AXIS3
711 AXES3

712 AXGRD3

713 M3GRID
714 M3WALL
715 M3MRK

720 VUFOC
721 VUAXO
722 VUPER
723 VUANG
724 VUAND
725 VUSCA

726 P3DUSR
727 USRP3D

728 PTSVIS

730 PTSMAT
731 IRRMAT

740 PLOCON
741 SMOCON

743 PLODCN
744 SMODCN

745 LEGTXT
746 LEGCOL

747 POLCON
748 POLDCN

750 SETOPT

751 SRFSET

752 CONSET

759 PLOSUP

760 PLOPOC
761 PLOPO4

770 PLOMAD

771 M3BOXD
772 M3COND
773 M3DRWD
774 M3GRDD
775 M3LIND
776 M3SPLD
777 M3WALD
778 M3MRKD

790 P3TEXT

C Language Interface Last changed: Apr 7, 1995

8th Edition GPGS-F User’s Guide PAGE H-1

Appendix H
C Language Interface

A C language interface to GPGS-F is available as a set of C routines build on top of the
Fortran routines.

The names of the C routines are identical to the Fortran routines with a leading c_ (e.g.
the C routine c_nitdev is the interface to the Fortran routine NITDEV).

The argument types used in the C routines varies from the Fortran arguments, as C
arguments are transferred by value, while Fortran arguments are transferred by reference.
If a C argument is to return a value, a pointer to the variable to receive the value must be
given as argument. For arrays there is however no difference, as C defines the value of an
array to be the address of its first element (arr = &arr[0]). Note that in C, the first array
index is 0 (zero), while in Fortran it is 1 (by default), and that in C, two dimensional arrays
are stored by rows while in Fortran they are stored by columns.

Table H.1 Summary of Fortran and C argument declarations.

Note! The table above is correct only for computers where type int in C is the same
number of bits as the default INTEGER type in Fortran.
If not, short int or long int is used within the C routines.

As shown by the table above, when a Fortran routine expects an argument of type logical,
a variable of type int must be used in C. As the internal representation of a Fortran logical
is not the same on all computers, the C interface of GPGS-F uses the following definition:

- If the value supplied by C is zero, GPGS-F will receive a FALSE value.
- If C supplies any other value than zero, GPGS-F will receive a TRUE value.

Fortran C (input only) C (output)
INTEGER I int i int *i

INTEGER I(N) int i[n]

INTEGER I(M,N) int i[n][m]

LOGICAL L int l int *l

REAL X float x float *x

REAL X(N) float x[n]

REAL X(N,M) float x[n][m]

CHARACTER*N C char c[n] or char *c

CHARACTER*N C(M) char *c[m]

C Language Interface Last changed: Apr 7, 1995

8th Edition GPGS-F User’s Guide PAGE H-2

Example H.1 A Fortran and C application program.

The rest of this appendix contains a list of all C interface routines to GPGS-F, with
argument declarations. (The C interface routines to GRAPHISTO and SURRENDER are
described in the GRAPHISTO User’s Manual and SURRENDER User’s Manual.)

void c_autox(mx, my)
int mx, my;

void c_autox3(mx, my, mz)
int mx, my, mz;

void c_await(time, itool)
float time;
int *itool;

void c_axon(xeye, yeye, zeye)
float xeye, yeye, zeye;

void c_bacdev(idev)
int idev;

void c_bacdrw()

void c_bacvpt(bvarr)
float *bvarr;

void c_bfacev(isw)
int isw;

void c_bgnnam(iname)
int iname;

void c_bgnpic(ident)
int ident;

void c_bgntrn()

void c_blictl(iswtch)
int iswtch;

void c_blipic(ident, isw)
int ident, isw;

Fortran C

REAL W(4)
DATA W/0.0, 0.5, 0.0, 0.5)

CALL GPGS
CALL NITDEV(72)
CALL WINDW(W)
CALL BGNPIC(1)
CALL COTIND(2)
CALL LINE(0.1, 0.1, 0)
CALL CHARC('Testing')
CALL REQLOC(201, XD, YD)
CALL NDCWIN(XD,YD,0.0, XW,YW,ZW)
CALL LINE(XW, YW, 0)
CALL MARKER(8)
CALL ENDPIC
CALL RLSDEV(72)

static float w[4]
 = {0.0, 0.5, 0.0, 0.5};
float xw, yw, zw, xd, yd;
c_gpgs();
c_nitdev(72);
c_windw(w);
c_bgnpic(1);
c_cotind(2);
c_line(0.1, 0.1, 0);
c_charc(“Testing”);
c_reqloc(201, &xd, &yd);
c_ndcwin(xd,yd,0.0, &xw,&yw,&zw);
c_line(xw, yw, 0);
c_marker(8);
c_endpic();
c_rlsdev(72);

C Language Interface Last changed: Apr 7, 1995

8th Edition GPGS-F User’s Guide PAGE H-3

void c_cescap(ichar)
int ichar;

void c_cfont(ifont)
int ifont;

void c_cfprop(isw)
int isw;

void c_charc(chstri)
char *chstri;

void c_chare(flpno, length, lfrac)
float flpno;
int length, lfrac;

void c_charf(flpno, length, lfrac)
float flpno;
int length, lfrac;

void c_chari(intno, length)
int intno, length;

void c_cirapr(dist)
float dist;

void c_circ(xc, yc, angle, ivis)
float xc, yc, angle;
int ivis;

void c_circ3(xc, yc, zc, xp, yp, zp, angle, ivis)
float xc, yc, zc, xp, yp, zp, angle;
int ivis;

void c_circr(dxc, dyc, angle, ivis)
float dxc, dyc, angle;
int ivis;

void c_circr3(dxc, dyc, dzc, dxp, dyp, dzp, angle, ivis)
float dxc, dyc, dzc, dxp, dyp, dzp, angle;
int ivis;

void c_cird(xc, yc, dangle, ivis)
float xc, yc, dangle;
int ivis;

void c_cird3(xc, yc, zc, xp, yp, zp, dangle, ivis)
float xc, yc, zc, xp, yp, zp, dangle;
int ivis;

void c_cirdr(dxc, dyc, dangle, ivis)
float dxc, dyc, dangle;
int ivis;

void c_cirdr3(dxc, dyc, dzc, dxp, dyp, dzp, dangle, ivis)
float dxc, dyc, dzc, dxp, dyp, dzp, dangle;
int ivis;

void c_cjust(horiz, vert)
float horiz, vert;

void c_clang(ilang)
int ilang;

void c_clictl(iswtch)
int iswtch;

C Language Interface Last changed: Apr 7, 1995

8th Edition GPGS-F User’s Guide PAGE H-4

void c_clrdev(idev, iopt)
int idev, iopt;

void c_clrdwi(idwi)
int idwi;

void c_clrlib(iunit)
int iunit;

void c_clstty(iunit)
int iunit;

void c_comp(tmat)
float *tmat;

void c_cothls(ind1, hue, rlight, sat, lth)
int ind1, lth;
float *hue, *rlight, *sat;

void c_cothsv(ind1, hue, sat, val, lth)
int ind1, lth;
float *hue, *sat, *val;

void c_cotind(ind)
int ind;

void c_cotrgb(ind1, red, green, blue, lth)
int ind1, lth;
float *red, *green, *blue;

void c_crota(angle)
float angle;

void c_crotad(dangle)
float dangle;

void c_cshea(shear)
float shear;

void c_csizel(xlett, ylett)
float xlett, ylett;

void c_csizes(xspace, yspace)
float xspace, yspace;

void c_curv(fx, fy, plowl, uppl, step, ivis)
float (*fx) ();
float (*fy) ();
float plowl, uppl, step;
int ivis;

void c_curv3(fx, fy, fz, plowl, uppl, step, ivis)
float (*fx) ();
float (*fy) ();
float (*fz) ();
float plowl, uppl, step;
int ivis;

void c_curvr(dfx, dfy, plowl, uppl, step, ivis)
float (*dfx) ();
float (*dfy) ();
float plowl, uppl, step;
int ivis;

C Language Interface Last changed: Apr 7, 1995

8th Edition GPGS-F User’s Guide PAGE H-5

void c_curvr3(dfx, dfy, dfz, plowl, uppl, step, ivis)
float (*dfx) ();
float (*dfy) ();
float (*dfz) ();
float plowl, uppl, step;
int ivis;

void c_datatr(iarr, lthi, farr, lthf)
int *iarr, lthi, lthf;
float *farr;

void c_datbuf(iarr, lthi)
int *iarr, lthi;

void c_datcbx(tx, ty, strlen, nlines, cx, cy, bxarr, byarr)
float tx, ty, strlen, *cx, *cy, *bxarr, *byarr;
int nlines;

void c_datchr(iarr, lthi, farr, lthf)
int *iarr, lthi, lthf;
float *farr;

void c_datcir(imod, dist)
int *imod;
float *dist;

void c_datcli(iswtch)
int *iswtch;

void c_datcxc(chstri, strlen, nlines)
char *chstri;
float *strlen;
int *nlines;

void c_datdev(iarr, lthi, farr, lthf)
int *iarr, lthi, lthf;
float *farr;

void c_datdno(idev)
int *idev;

void c_datdwi(idwi, iarr, lthi, farr, lthf)
int idwi, *iarr, lthi, lthf;
float *farr;

void c_datfnu(ifontu, ierru)
int *ifontu, *ierru;

void c_dathid(iarr, lthi)
int *iarr, lthi;

void c_datlib(iarr, lthi)
int *iarr, lthi;

void c_datmar(size)
float *size;

void c_datpar(ipolsz, icros, ipatsz)
int *ipolsz, *icros, *ipatsz;

void c_datpix(xwlol, ywlol, idimx, indarr, nx, ny, istat)
float xwlol, ywlol;
int idimx, *indarr, nx, ny, *istat;

void c_datpno(ident)
int *ident;

C Language Interface Last changed: Apr 7, 1995

8th Edition GPGS-F User’s Guide PAGE H-6

void c_datpos(xpos, ypos, zpos)
float *xpos, *ypos, *zpos;

void c_datusr(xusr, yusr, zusr)
float *xusr, *yusr, *zusr;

void c_datvp(varr3)
float *varr3;

void c_datwin(warr3)
float *warr3;

void c_defer(idefer, ialdev)
int idefer, ialdev;

void c_delpic(ident)
int ident;

void c_depctl(iswtch)
int iswtch;

void c_devopt(iarr, ilthi, rarr, ilthr, carr, ilthc)
int *iarr, ilthi, ilthr, ilthc;
float *rarr;
char **carr;

void c_dsable(itool)
int itool;

void c_echctl(itool, istat)
int itool, istat;

void c_echtol(itool, iarr, lthi, farr, lthf)
int itool, *iarr, lthi, lthf;
float *farr;

void c_echtxc(itool, chstri)
int itool;
char *chstri;

void c_echvp(itool, varr)
int itool;
float *varr;

void c_elip(xcn, ycn, xrad, yrad, ang0, angle, rotang, ivis)
float xcn, ycn, xrad, yrad, ang0, angle, rotang;
int ivis;

void c_enable(itool)
int itool;

void c_endnam()

void c_endpic()

void c_endtrn()

void c_erfile(ifile)
int ifile;

void c_flushe(itool)
int itool;

void c_getbut(istat)
int *istat;

C Language Interface Last changed: Apr 7, 1995

8th Edition GPGS-F User’s Guide PAGE H-7

void c_gethit(maxnam, namarr, lennam)
int maxnam, *namarr, *lennam;

void c_getloc(xndc, yndc)
float *xndc, *yndc;

void c_gettxc(chstri, length)
char *chstri;
int *length;

void c_getval(value)
float *value;

void c_gpgs()

void c_gpgsof()

void c_gufscl(iunit, istat)
int iunit, *istat;

void c_gufsop(iunit, fname, nrec, fstat, istat)
int iunit, nrec, *istat;
char *fname, *fstat;

void c_hidctl(isw)
int isw;

void c_hitpos(xndc, yndc)
float *xndc, *yndc;

void c_htcdef(index, angle)
int index;
float angle;

void c_iden()

void c_inpdev(idev)
int idev;

void c_inpdwi(idwi, isw)
int idwi, isw;

void c_inqdrv(idev, istat)
int idev, *istat;

void c_inqdwi(idwi, iwsid, ichg)
int idwi, *iwsid, *ichg;

void c_inqgpv(ibasv, isubv)
int *ibasv, *isubv;

void c_inscol(imod)
int imod;

void c_insert(ident)
int ident;

void c_inshid(iopts, length)
int *iopts, length;

void c_inslib(iunit, ident)
int iunit, ident;

void c_line(x, y, ivis)
float x, y;
int ivis;

C Language Interface Last changed: Apr 7, 1995

8th Edition GPGS-F User’s Guide PAGE H-8

void c_line3(x, y, z, ivis)
float x, y, z;
int ivis;

void c_liner(dx, dy, ivis)
float dx, dy;
int ivis;

void c_liner3(dx, dy, dz, ivis)
float dx, dy, dz;
int ivis;

void c_lini(ix, iy, ivis)
int ix, iy, ivis;

void c_lini3(ix, iy, iz, ivis)
int ix, iy, iz, ivis;

void c_linir(idx, idy, ivis)
int idx, idy, ivis;

void c_linir3(idx, idy, idz, ivis)
int idx, idy, idz, ivis;

void c_linwid(wscal)
float wscal;

void c_lpgpgs(ivis)
int ivis;

void c_lphotd(ivis, width, delta)
int ivis;
float width, delta;

void c_lpoffs(ivis, offset)
int ivis;
float offset;

void c_lppara(ivis, width, delta)
int ivis;
float width, delta;

void c_lppatt(ivis, itypar, rlenar, length)
int ivis, *itypar, length;
float *rlenar;

void c_lpscal(scale)
float scale;

void c_lpsctl(isw)
int isw;

void c_lpset(cid, value)
char *cid;
float value;

void c_lpspic(ident, isw)
int ident, isw;

void c_marker(imar)
int imar;

void c_modtrn(imod)
int imod;

C Language Interface Last changed: Apr 7, 1995

8th Edition GPGS-F User’s Guide PAGE H-9

void c_movdwi(idwi, ixpos, iypos, imod, icorn)
int idwi, ixpos, iypos, imod, icorn;

void c_msglev(ilevel)
int ilevel;

void c_msize(size)
float size;

void c_name(iname)
int iname;

void c_ndcwin(xndc, yndc, zndc, xwin, ywin, zwin)
float xndc, yndc, zndc, *xwin, *ywin, *zwin;

void c_nitbuf(iarr, length)
int *iarr, length;

void c_nitdev(idev)
int idev;

void c_nitdwi(idwi, ityp, iref)
int idwi, ityp, iref;

void c_nithid()

void c_nitlib(iunit)
int iunit;

int c_nittty(idev, filename)
int idev;
char *filename;

void c_patdef(index, icarr, nx, ny)
int index, *icarr, nx, ny;

void c_pers(xeye, yeye, zeye)
float xeye, yeye, zeye;

void c_piref(xref, yref)
float xref, yref;

void c_pisiz(dx, dy, hdist)
float dx, dy, hdist;

void c_pityp(iptyp)
int iptyp;

void c_pixarr(width, height, idimx, indarr, nx, ny)
float width, height;
int idimx, *indarr, nx, ny;

void c_poly(xarr, yarr, lth, itype)
float *xarr, *yarr;
int lth, itype;

void c_poly3(xarr, yarr, zarr, lth, itype)
float *xarr, *yarr, *zarr;
int lth, itype;

void c_polyr(dxarr, dyarr, lth, itype)
float *dxarr, *dyarr;
int lth, itype;

void c_polyr3(dxarr, dyarr, dzarr, lth, itype)
float *dxarr, *dyarr, *dzarr;
int lth, itype;

C Language Interface Last changed: Apr 7, 1995

8th Edition GPGS-F User’s Guide PAGE H-10

void c_popdwi(idwi, isw)
int idwi, isw;

void c_prcind(ind)
int ind;

void c_pripic(ident, ipri)
int ident, ipri;

void c_rdrdwi(idwi)
int idwi;

void c_readwi(idwi)
int *idwi;

void c_reatol(itool, iarr, lthi, farr, lthf)
int itool, *iarr, lthi, lthf;
float *farr;

void c_redraw()

void c_refer(ident)
int ident;

void c_reqbut(itool, ibutno, istat)
int itool, *ibutno, *istat;

void c_reqhit(itool, maxnam, namarr, lennam)
int itool, maxnam, *namarr, *lennam;

void c_reqloc(itool, xndc, yndc)
int itool;
float *xndc, *yndc;

void c_reqtxc(itool, chstri, length)
int itool, *length;
char *chstri;

void c_reqval(itool, value)
int itool;
float *value;

void c_respic(idold, idnew)
int idold, idnew;

void c_retain(iswtch)
int iswtch;

void c_rlsbuf(iarr)
int *iarr;

void c_rlsdev(idev)
int idev;

void c_rlsdwi(idwi)
int idwi;

void c_rlslib(iunit)
int iunit;

void c_rota(angle, iaxis)
float angle;
int iaxis;

void c_rotad(dangle, iaxis)
float dangle;
int iaxis;

C Language Interface Last changed: Apr 7, 1995

8th Edition GPGS-F User’s Guide PAGE H-11

void c_rpadwi(idwi, iref, ireftp)
int idwi, iref, ireftp;

void c_rszdwi(idwi, iwid, ihei, imod)
int idwi, iwid, ihei, imod;

void c_savmod(iswtch)
int *iswtch;

void c_savpic(idold, idnew)
int idold, idnew;

void c_savtrn(tmat)
float *tmat;

void c_scal(scale, iaxis)
float scale;
int iaxis;

void c_selbuf(iarr)
int *iarr;

void c_seldev(idev)
int idev;

void c_seldwi(idwi)
int idwi;

void c_sellib(iunit)
int iunit;

void c_setfnu(ifontu, ierru)
int ifontu, ierru;

void c_shea(shear, iaxis1, iaxis2)
float shear;
int iaxis1, iaxis2;

void c_smpbut(itool, ibutno, istat)
int itool, *ibutno, *istat;

void c_smphit(itool, maxnam, namarr, lennam)
int itool, maxnam, *namarr, *lennam;

void c_smploc(itool, xndc, yndc)
int itool;
float *xndc, *yndc;

void c_smptxc(itool, chstri, length)
int itool, *length;
char *chstri;

void c_smpval(itool, value)
int itool;
float *value;

void c_sofcha(isw)
int isw;

void c_sofcir(isw)
int isw;

void c_sofpix(isw)
int isw;

void c_sofpol(iqual)
int iqual;

C Language Interface Last changed: Apr 7, 1995

8th Edition GPGS-F User’s Guide PAGE H-12

void c_tabi(ixarr, iyarr, lthi, ivis)
int *ixarr, *iyarr, lthi, ivis;

void c_tabi3(ixarr, iyarr, izarr, lthi, ivis)
int *ixarr, *iyarr, *izarr, lthi, ivis;

void c_tabir(idxarr, idyarr, lthi, ivis)
int *idxarr, *idyarr, lthi, ivis;

void c_tabir3(idxarr, idyarr, idzarr, lthi, ivis)
int *idxarr, *idyarr, *idzarr, lthi, ivis;

void c_tabl(xarr, yarr, lthi, ivis)
float *xarr, *yarr;
int lthi, ivis;

void c_tabl3(xarr, yarr, zarr, lthi, ivis)
float *xarr, *yarr, *zarr;
int lthi, ivis;

void c_tablr(dxarr, dyarr, lthi, ivis)
float *dxarr, *dyarr;
int lthi, ivis;

void c_tablr3(dxarr, dyarr, dzarr, lthi, ivis)
float *dxarr, *dyarr, *dzarr;
int lthi, ivis;

void c_tran(tmat)
float *tmat;

void c_updat(iregen)
int iregen;

void c_usrwin(xusr, yusr, zusr, xwin, ywin, zwin)
float xusr, yusr, zusr, *xwin, *ywin, *zwin;

void c_vans(xvan, yvan, zvan)
float xvan, yvan, zvan;

void c_viden(ident)
int ident;

void c_visdwi(idwi, isw)
int idwi, isw;

void c_vispic(ident, isw)
int ident, isw;

void c_vport(v2arr)
float *v2arr;

void c_vport3(v3arr)
float *v3arr;

void c_vxlat(ident, xdisp, ydisp)
int ident;
float xdisp, ydisp;

void c_vxlat3(ident, xdisp, ydisp, zdisp)
int ident;
float xdisp, ydisp, zdisp;

void c_windw(w2arr)
float *w2arr;

C Language Interface Last changed: Apr 7, 1995

8th Edition GPGS-F User’s Guide PAGE H-13

void c_windw3(w3arr)
float *w3arr;

void c_winndc(xwin, ywin, zwin, xndc, yndc, zndc)
float xwin, ywin, zwin, *xndc, *yndc, *zndc;

void c_winusr(invert, xwin, ywin, zwin, xusr, yusr, zusr)
int invert;
float xwin, ywin, zwin, *xusr, *yusr, *zusr;

void c_xlat(xdisp, ydisp)
float xdisp, ydisp;

void c_xlat3(xdisp, ydisp, zdisp)
float xdisp, ydisp, zdisp;

C Language Interface Last changed: Apr 7, 1995

8th Edition GPGS-F User’s Guide PAGE H-14

Error Messages Last changed: Apr 7, 1995

8th Edition GPGS-F User’s Guide PAGE I-1

Appendix I
Error Messages

Basic GPGS-F error messages
Error

Number
Message

Description

1 End of medium - buffer limit exceeded.
No more space in primary picture segment buffer.

2 Buffer not initialized or buffer already initialized.
Attempt to initialize (NITBUF) the same picture buffer twice, or
attempt to select (SELBUF) or release (RLSBUF) a buffer that is
not initialized.

3 No current buffer.
Attempt to create a pseudo or retained segment, but no picture
buffer has been initialized.

4 No device.
Graphical output generated, but there is no current device.

5 Undefined device facility requested.
Driver cannot perform requested operation.

6 Segment reference not allowed for this device.
Current device must be the pseudo device when REFER is used.

7 Picture segment open.
A routine requiring that there is no open segment, (e.g. VPORT,
SELDEV) is called while a segment is open.

8 No picture segment open.
Graphic output generated, but there is no picture segment open.

9 Picture segment does not exist.
Reference to a non existing picture segment.

10 Picture segment already exists.
Attempt to create (BGNPIC) or copy (RESPIC / SAVPIC) a
segment, using an identifier that is already used.

11 Illegal value of argument.
Argument is outside its allowable range.

12 Illegal area.
Upper limit lower than lower limit, or similar.

Error Messages Last changed: Apr 7, 1995

8th Edition GPGS-F User’s Guide PAGE I-2

13 Illegal device number.
Attempt to initialize a device (NITDEV) using an illegal device
number, or clear / select / release a device that is not initialized.

14 No background device has been selected.
BACDRW called, but there is no background device.

15 Undefined arithmetic operation.
Error in floating data.

16 Stack error.
Too many nested calls or unmatched calls.

17 String error.
Illegal character or control command.

18 Too large array.

19 System error.
Contact system people.

21 System resources exceeded.
Some table has overflowed.

22 Recursive picture segment reference in pseudo picture.

23 Driver error.
Contact system people.

25 Illegal command.
Illegal code found in inserted pseudo segment.

26 Inconsistent end of picture segment.
Error when fetching pseudo segment. May be caused by a picture
buffer being over-written.

27 Buffer inconsistency.
Buffer administration area destroyed.

Basic GPGS-F error messages (cont.)
Error

Number
Message

Description

Error Messages Last changed: Apr 7, 1995

8th Edition GPGS-F User’s Guide PAGE I-3

Error messages from GPGS-F file system
(picture library routines)

Error
Number

Message
Description.

30 Library not initialized.
Referring to a picture library (e.g. INSLIB, SELLIB) that has not
been initialized by NITLIB.

31 Library already initialized.
Attempt to initialize the same library twice.

32 Too many libraries open.
A maximum of 4 libraries may be open at the same time.

33 No current library.
DATLIB, RESPIC or SAVPIC, but there is no current library.

34 File access error.
GPGS-F could not read or write the library file.

35 Unexpected I/O error.
Contact system people.

36 Library not properly closed.
Inconsistency in library file, probably because it was not closed the
previous time it was used.

37 Segment table full, can not store more segments.

38 Attempt to write past end of file.

39 Library file not compatible with current GPGS-F version.
The program building the library must be linked with the latest
GPGS-F version and run.

Error Messages Last changed: Apr 7, 1995

8th Edition GPGS-F User’s Guide PAGE I-4

Error messages from interaction routines
Error

Number
Message

Description.

40 No tool active - infinite wait.

41 Illegal class number.
Input tool does not exist

42 Too many tools enabled for event input.

44 Tool enabled for event input.
Tool used in request or sample mode, or tool to be enabled is
already set to event mode.

45 Tool not enabled for event input.
Tool to be disabled is not enabled.

46 Current event report is of illegal type.
The data in the current event report is not of the requested type.

47 No current event.
Event report data requested, but there is no current event.

Error messages from raster routines
Error

Number
Message

Description.

50 Singular transformation matrix.
Impossible to invert the matrix.

51 Too many vertices in hatched or patterned polygon.

52 Degenerate polygon.
Impossible to compute the polygon plane normal.

53 Too complex polygon.
Impossible to keep intersections between a line and polygon
vertices, internal table overflow.

54 Internal error when scanconverting the polygon.
Contact system people.

Error Messages Last changed: Apr 7, 1995

8th Edition GPGS-F User’s Guide PAGE I-5

Error messages from GRAPHISTO
Error

Number
Message

Description.

61 Missing definition of axis.
Both axes must be defined before plotting the first axis, and before
any data plotting (curves, bars, etc.).

62 Illegal area dimension.
Illegal definition of page or plot area, e.g. lower value specified
larger than upper value.

63 No current axis.
Attempt to add axis annotation, but there is no current axis.

64 No previous axis.
Attempt to draw an axis next to the previous, but there is no
previous axis.

65 Illegal angle for axis title.
Axis title must be parallel or perpendicular to the axis.

66 Pie chart not defined.
Attempt to plot a pie segment before the pie is defined.

67 Too many protected areas.
Storing capacity of the blanking module is exceeded. Either too
many protected areas are defined, or the total number of points
added to the module is too large.

68 Illegal option name.
The text string given to select an option did not match any of the
legal choices.

69 One axis must be discrete.
Attempt to use one of the bar plotting routines requiring a discrete
axis, but both axes have been defined to be linear.

Error Messages Last changed: Apr 7, 1995

8th Edition GPGS-F User’s Guide PAGE I-6

Error messages from SURRENDER
Error

Number
Message

Description.

71 Too small working array.
Working array supplied to SURRENDER surface or contour
plotting routine is too small.

72 No viewing transformation present.
Attempt to reuse transformation, but no viewing transformation is
defined.

73 Illegal (sub)area specified.
Either the data set size specified with a surface or contour plotting
routine is too small, or the subarea selected by an option setting
routine is illegal (lower limit larger than upper limit).

74 No 3D surface present.
Attempt to add annotation to a surface plot, but no surface has yet
been defined.

75 Singular matrix for inversion.
Transformation matrix is singular. May occur with surface plots
when the Z axis is to be automatically defined, and the difference
between the lower an upper Z value is very small compared to the
axes ranges specified in X and Y direction.

76 Undefined points mismatch.
With the PLOMA4 and PLOPO4 routines, there must be a strict
correspondence between undefined points in the two data sets, i.e.
a given node must either be defined in both data sets, or undefined
in both.

Error messages from font routines
Error

Number
Message

Description.

80 Error when opening font file.

81 Error when reading from font file.

82 Error when closing font file.

Error Messages Last changed: Apr 7, 1995

8th Edition GPGS-F User’s Guide PAGE I-7

Error messages from HLHS module
Error

Number
Message

Description.

90 HLHS module has not been initialized.
Attempt to use the HLHS module before it has been initialized.

91 Too many polygons added to the HLHS module.

92 Too many vertices added to the HLHS module.

93 Too many vertices in a polygon added to the HLHS module.

94 Too complex polygon in HLHS module.
Impossible to keep all intersections between two polygons, internal
table overflow.

95 Internal error when splitting a polygon.
Contact system people.

96 Too many lines added to the HLHS module.

Error messages from routines handling
multi window devices

Error
Number

Message
Description.

100 Device window does not exist.

101 Device window already exists.

102 Illegal device window.
Attempt to close window 1.

103 Parent device window does not exist.

104 Illegal reparent command.
Attempt to reparent a top level window.

105 Illegal device window identifier.

106 Illegal operation for this type of device window.

108 Referenced device window does not exist.

Error Messages Last changed: Apr 7, 1995

8th Edition GPGS-F User’s Guide PAGE I-8

8th Edition Index-1GPGS-F User’s Guide

Keyword Index Last changed: Aug 16, 1995

Keyword Index

An index of GPGS-F subroutines is found in Appendix F.

Keywords are given in Keyword-in-Context format.

A
character Alignment 7-7

inquire current character Alignment 23-4
circle Arc drawing 4-7
circle Arc smoothness 4-10

inquire current circle Arc smoothness 23-3
elliptic Arc drawing 4-11

pixel Array, see Pixel array
inquire character Attributes 23-3

inquire circle Attributes 23-3
picture element Attributes 13-1 to 13-2, 20-3

inquire picture element Attributes 23-2
retained segment Attributes 17-1 to 17-4, 20-4

Automatic index increment 10-2, 12-3
Automatic value increment 10-2, 10-5, 12-3
Axonometric projection 6-12

B
Background colour 11-1, 11-2

copy retained segments to Background device 19-1, 21-13
select Background device 19-1

viewport of Background device 19-2
HLHS module and Back-facing polygons 22-7

picture element Blinking 13-2
inquire current picture element Blinking mode 23-2

retained segment Blinking 17-3
insert pseudo segment from Buffer 15-1

primary Buffer for segment storage 14-3
copy picture segment to Buffer from library 14-6

copy picture segment from Buffer to library 14-6
inquire segment Buffer status 23-8

Buffer / pick simulation module 14-2, 16-1, 17-1, 20-5, E-4
get Button event report 8-7

echo selection for Button input 8-10
request Button input 8-3
sample Button input 8-5

8th Edition Index-2GPGS-F User’s Guide

Keyword Index Last changed: Aug 16, 1995

C
C language interface H-1 to H-13
Character, see also Text
Character alignment 7-7

inquire current Character alignment 23-4
inquire Character attributes 23-3

Character drawing 7-1
Character encoding 7-10

inquire current Character font 23-3
Character font selection 7-8

software Character fonts B-2 to B-9
inquire number of hardware Character fonts 23-5

Character format control 7-2
Character language 7-10

inquire current Character language 23-3
Character rotation 7-6

inquire current Character rotation 23-4
software / hardware Character selection 7-6

inquire current software / hardware Character selection 23-3
Character shearing 7-5

inquire current Character shearing factor 23-4
Character size 7-4

inquire current Character size 23-3
Character spacing 7-4

inquire Circle attributes 23-3
inquire hardware Circle capability 23-6

Circle drawing 4-7
software / hardware Circle selection 4-10

inquire current software / hardware Circle selection 23-3
Circle smoothness 4-10

inquire current Circle smoothness 23-3
Clear device 1-2
Clear device window 21-3
Clear picture library 14-5

inquire hardware Clipping method 23-5
Clipping mode 2-4

inquire current Clipping mode 23-3
Clipping pseudo segment 15-4
Close GPGS-F 24-5
Close picture library file 14-6
Close picture segment 3-1

background Colour 11-1, 11-2
polygon perimeter Colour 12-4

Colour index 11-1
Colour index selection 11-2

8th Edition Index-3GPGS-F User’s Guide

Keyword Index Last changed: Aug 16, 1995

inquire current Colour index 23-2
inquire maximum Colour index 23-6

HLS Colour model 11-4
HSV Colour model 11-5
RGB Colour model 11-3

Colour of inserted pseudo segment 15-2
Colour table 11-1

default Colour table 11-6
define Colour table 11-2 to 11-6

inquire Colour table type 23-6
Coordinate conversion 8-14
Coordinate processing 2-4 to 2-5
Coordinate rotation 6-4
Coordinate scaling 6-4
Coordinate shearing 6-6
Coordinate translation 6-3

normalized device Coordinates (NDC) 2-2
user Coordinates 2-1

window Coordinates 2-1
Copy picture segment 14-6
Copy retained segments to background device 19-1, 21-13
Create device window 21-2
Create picture segment 3-1

inquire Current active device 23-1
inquire Current character alignment 23-4
inquire Current character font 23-3
inquire Current character language 23-3
inquire Current character rotation 23-4
inquire Current character shearing factor 23-4
inquire Current character size 23-3
inquire Current circle smoothness 23-3
inquire Current clipping mode 23-3
inquire Current colour index 23-2
inquire Current depth modulation mode 23-2

Current device 1-2
Current device window 21-5

inquire Current escape character 23-3
inquire Current linewidth scaling factor 23-2
inquire Current marker size 23-4
inquire Current picture element blinking mode 23-2
inquire Current picture element detectability 23-2
inquire Current picture segment 23-1

Current position 4-1
inquire Current position 23-2

Current position with circles 4-8

8th Edition Index-4GPGS-F User’s Guide

Keyword Index Last changed: Aug 16, 1995

Current position with curves 10-4
Current position with elliptic arcs 4-11
Current position with lines 4-3
Current position with markers 4-12
Current position with pixel arrays 12-12
Current position with polygons 12-3
Current position with polylines 10-2
Current position with text 7-1

inquire Current software / hardware character selection 23-3
inquire Current software / hardware circle selection 23-3
inquire Current transformation mode 23-3
inquire Current viewport limits 23-2
inquire Current window limits 23-2

Curve drawing 10-4

D
Deferral mode 16-2

inquire number of Definable hatch styles 23-6
inquire number of Definable patterns 23-6

Define colour table 11-2 to 11-6
Define line representation 9-3 to 9-5
Define linetype 9-2
Define linewidth 9-3 to 9-4
Define polygon hatch style 12-8
Define polygon pattern 12-7
Delete pseudo segment 14-7
Delete retained segment 16-4

polygon hatch Density 12-8
Depth modulation 13-2

inquire current Depth modulation mode 23-2
picture element Detectability 20-3

inquire current picture element Detectability 23-2
retained segment Detectability 20-4

alternate input Device 8-11
copy retained segments to background Device 19-1, 21-13

current Device 1-2
inquire current active Device 23-1

select background Device 19-1
update Device 16-3

viewport of background Device 19-2
Device control 1-2

normalized Device coordinates (NDC) 2-2
inquire Device data 23-4 to 23-6

Device driver 1-1
list of Device drivers E-3

8th Edition Index-5GPGS-F User’s Guide

Keyword Index Last changed: Aug 16, 1995

Device options 1-4
inquire Device size 5-1, 23-4
inquire Device type 23-6

Device window, see device Window
Draw circle arc 4-7
Draw curve 10-4
Draw elliptic arc 4-11
Draw in true scale 5-1
Draw line 4-2
Draw marker 4-12
Draw numbers 7-3
Draw pixel array 12-12
Draw polygon 12-3
Draw polyline 10-1
Draw text 7-1

device Driver 1-1
flush Driver output buffer 1-5, 16-3

list of device Drivers E-3
inquire Drivers linked 1-5

E
Echo specification 8-8 to 8-10

input Echo viewport (area) 8-8
picture Element 4-1, 13-1
picture Element attributes 13-1 to 13-2, 20-3

inquire picture Element attributes 23-2
picture Element blinking 13-2

inquire current picture Element blinking mode 23-2
picture Element depth modulation 13-2

inquire current picture Element depth modulation mode 23-2
picture Element detectability 20-3

inquire current picture Element detectability 23-2
picture Element linewidth scaling factor 13-1

inquire current picture Element linewidth scaling factor 23-2
picture Element namestack 20-1 to 20-3

inquire maximum picture Element namestack length 23-4
Elliptic arc drawing 4-11

character Encoding 7-10
selective Erase 12-1, 16-2, 17-1

Error data file number 24-4
default Error data file number A-2
inquire Error data file number 23-7

application supplied Error handling routine 24-4
Error message file 24-3
Error message format 24-2

8th Edition Index-6GPGS-F User’s Guide

Keyword Index Last changed: Aug 16, 1995

Error messages I-1 to I-7
Escape character for format control 7-2

inquire current Escape character 23-3
Escape functions interaction tool 8-10
Event mode input 8-4 to 8-7

get Event report from queue 8-6
flush Event reports 8-5

inquire text Extent 7-13
Eye position for viewing 6-12

F
close picture library File 14-6

error message File 24-3
open picture library File 14-5

default error data File number A-2
error data File number 24-4

inquire error data File number 23-7
GPGS-F input / output File number 1-4, D-1

inquire File numbers 23-7
default font File unit number A-2

font File unit number 7-9
inquire font File unit number 23-7

Flush driver output buffer 1-5, 16-3
Flush event reports 8-5
Focal point 6-14

character Font selection 7-8
inquire current character Font 23-3

Fontfile unit number 7-9
default Fontfile unit number A-2
inquire Fontfile unit number 23-7

inquire number of hardware Fonts 23-5
software Fonts B-2 to B-9

error message Format 24-2
character Format control 7-2

G
Graphic element (primitive), see picture Element
GRAPHISTO C-2

specify Grey level 11-6

H
Hardware character selection 7-6

inquire Hardware circle capability 23-6
Hardware circle selection 4-10

8th Edition Index-7GPGS-F User’s Guide

Keyword Index Last changed: Aug 16, 1995

inquire Hardware clipping method 23-5
inquire number of Hardware fonts 23-5

Hardware pixel array selection 12-12
Hardware polygon selection 12-6

inquire Hardware text capability 23-5
Hatch density 12-8

select Hatch polygon texture 12-5
define polygon Hatch style 12-8

polygon Hatch style definition, summary 12-9
polygon Hatch style reference point 12-9
polygon Hatch style table 12-4, 12-7

inquire number of definable Hatch styles 23-6
predefined polygon Hatch styles 12-8

Hidden lines and surfaces, see HLHS module
HLHS module 22-1 to 22-8

storing back-facing polygons in HLHS module 22-7
using dummy device with HLHS module 22-6

HLHS module limitations 22-8
inquire HLHS module limits 23-7
inquire HLHS module utilization 23-7

HLS colour model 11-4
HSV colour model 11-5

I
device window Identifier 21-9

picture segment Identifier 3-1, 14-2
Image transformations 18-1

inquire Image transformations capability 23-5
automatic index Increment 10-2, 12-3
automatic value Increment 10-2, 10-5, 12-3

colour Index 11-1
inquire current colour Index 23-2

inquire maximum colour Index 23-6
polygon hatch style Index 12-4, 12-7

polygon pattern Index 12-4, 12-7
automatic Index increment 10-2, 12-3

colour Index selection 11-2
Initialize device 1-2
Initialize device window 21-2
Initialize GPGS-F 1-1
Initialize picture library 14-5
Initialize segment buffer 14-3

event mode Input 8-4 to 8-7
request mode Input 8-2 to 8-4
sample mode Input 8-4 to 8-5

8th Edition Index-8GPGS-F User’s Guide

Keyword Index Last changed: Aug 16, 1995

GPGS-F Input / output file number 1-4, D-1
additional Input data 8-12

alternate Input device 8-11
Input echo specification 8-8 to 8-10
Input from device window 21-13
Input tool numbers 8-1
Insert pseudo segment from buffer 15-1
Insert pseudo segment from library 15-2

colour of Inserted pseudo segment 15-2
Installation dependent parameters A-1 to A-3

inquire Installation dependent parameters 23-7
Interaction, see Input

polygon Interior style 12-4

L
character Language 7-10

inquire current character Language 23-3
insert pseudo segment from Library 15-2

close picture Library file 14-6
open picture Library file 14-5

copy picture segment to Library from buffer 14-6
copy picture segment from Library to buffer 14-6

picture Library segment storage 14-4
inquire picture Library status 23-8

Line drawing 4-2
Line representation 9-3 to 9-5
Linepattern scaling 4-2

hidden Lines and surfaces, see HLHS module
define Linetype 9-2

predefined Linetypes 4-1
Linewidth 9-3
Linewidth scaling factor 13-1

inquire current Linewidth scaling factor 23-2
get Locator event report 8-7

echo selection for Locator input 8-10
request Locator input 8-2
sample Locator input 8-5

M
Marker drawing 4-12
Marker size 4-12

inquire current Marker size 23-4
transformation Matrix, see Transformation matrix

error Message file 24-3

8th Edition Index-9GPGS-F User’s Guide

Keyword Index Last changed: Aug 16, 1995

error Message format 24-2
error Messages I-1 to I-7

MICRO-GPGS-F C-1
Modelling transformations 6-1 to 6-17

depth Modulation 13-2
inquire current depth Modulation mode 23-2

Monochrome devices 11-6

N
NDC (normalized device coordinates) 2-2

picture element Namestack 20-1 to 20-3
inquire maximum Namestack length 23-4

convert window to NDC coordinates 8-14
convert NDC to window coordinates 8-14

Normalized device coordinates (NDC) 2-2
draw Numbers as text 7-3

O
Open device window 21-2
Open picture library file 14-5
Open picture segment 3-1

device Options 1-4
device window Options 21-1, 21-3

flush driver Output buffer 1-5, 16-3
GPGS-F input / Output file number 1-4, D-1

P
installation dependent Parameters A-1 to A-3

inquire installation dependent Parameters 23-7
define line Pattern 9-2

define polygon Pattern 12-7
polygon Pattern definition, summary 12-9

select Pattern polygon texture 12-5
polygon Pattern reference point 12-9
polygon Pattern size 12-8
polygon Pattern table 12-4, 12-7

inquire number of definable Patterns 23-6
predefined polygon Patterns 12-7

polygon Perimeter colour 12-4
Perspective projection 6-12

get Pick event report 8-6
Pick input 20-1 to 20-7

echo selection for Pick input 8-9
request Pick input 8-3

8th Edition Index-10GPGS-F User’s Guide

Keyword Index Last changed: Aug 16, 1995

sample Pick input 8-4
Pick input and pseudo segments 20-7

buffer / Pick simulation module 14-2, 16-1, 17-1, 20-5, E-4
Picture element, see picture Element
Picture mode transformations 6-16
Picture segment, see Segment

inquire Pixel array capability 23-6
Pixel array drawing 12-12
Pixel array readback 12-15

software / hardware Pixel array selection 12-12
Polygon definition 12-2
Polygon drawing 12-3
Polygon hatch density 12-8
Polygon hatch reference point 12-9

define Polygon hatch style 12-8
inquire number of definable Polygon hatch styles 23-6

Polygon hatch style definition, summary 12-9
Polygon hatch style table 12-4, 12-7

predefined Polygon hatch styles 12-8
Polygon interior style 12-4

define Polygon pattern 12-7
inquire number of definable Polygon patterns 23-6

Polygon pattern definition, summary 12-9
Polygon pattern reference point 12-9
Polygon pattern size 12-8
Polygon pattern table 12-4, 12-7

predefined Polygon patterns 12-7
Polygon perimeter colour 12-4

software / hardware Polygon selection 12-6
3D Polygon texture 12-11

Polygon texture quality 12-5
Polygon texture selection 12-5
Polyline drawing 10-1

current Position 4-1
inquire current Position 23-2
device window Position 21-7

retained segment Position 18-1
current Position with circles 4-8
current Position with curves 10-4
current Position with elliptic arcs 4-11
current Position with lines 4-3
current Position with markers 4-12
current Position with pixel arrays 12-12
current Position with polygons 12-3
current Position with polylines 10-2

8th Edition Index-11GPGS-F User’s Guide

Keyword Index Last changed: Aug 16, 1995

current Position with text 7-1
Predefined colour table 11-6
Predefined linetypes 4-1
Predefined polygon hatch styles 12-8
Predefined polygon patterns 12-7

graphic Primitive, see picture Element
inquire number of segment Priorities allowed 23-6

retained segment Priority 17-3
axonometric Projection 6-12
perspective Projection 6-12

Proportional spacing 7-12
Pseudo segment 14-1, 15-1

clipping Pseudo segment 15-4
colour of inserted Pseudo segment 15-2

copy Pseudo segment 14-6
delete Pseudo segment 14-7
insert Pseudo segment from buffer 15-1
insert Pseudo segment from library 15-2

Pseudo segment reference 15-4
pick input and Pseudo segments 20-7

R
Redraw all retained segments 16-4
Redraw retained segments of device window 21-10

pseudo segment Reference 15-4
polygon pattern / hatch Reference point 12-9

Release device 1-2
Release device window 21-3
Release picture library 14-6
Release segment buffer 14-3

hidden lines and surfaces Removal, see HLHS module
Reparent device window 21-8

flush event Reports 8-5
Request mode input 8-2 to 8-4
Retained segment 14-2, 16-1

copy Retained segment 14-6
delete Retained segment 16-4

Retained segment attributes 17-1 to 17-4, 20-4
Retained segment blinking 17-3
Retained segment detectability 20-4
Retained segment position 18-1
Retained segment priority 17-3

inquire Retained segment storage method 23-5
Retained segment visibility 17-1

device windows and Retained segments 21-10

8th Edition Index-12GPGS-F User’s Guide

Keyword Index Last changed: Aug 16, 1995

redraw all Retained segments 16-4
redraw Retained segments of device window 21-10

copy Retained segments to background device 19-1, 21-13
RGB colour model 11-3

character Rotation 7-6
inquire current character Rotation 23-4

coordinate Rotation 6-4

S
Sample mode input 8-4 to 8-5

draw in true Scale 5-1
coordinate Scaling 6-4
linepattern Scaling 4-2

clipping pseudo Segment 15-4
close picture Segment 3-1

colour of inserted pseudo Segment 15-2
copy picture Segment 14-6

delete pseudo Segment 14-7
delete retained Segment 16-4

inquire current picture Segment 23-1
open picture Segment 3-1

pseudo Segment 14-1, 15-1
retained Segment 14-2, 16-1
retained Segment attributes 17-1 to 17-4, 20-4
retained Segment blinking 17-3
inquire Segment buffer status 23-8
picture Segment classes 14-1
picture Segment definition 14-1

retained Segment detectability 20-4
insert pseudo Segment from buffer 15-1
insert pseudo Segment from library 15-2

picture Segment identifier 3-1, 14-2
picture Segment introduction 3-1

retained Segment position 18-1
inquire number of Segment priorities allowed 23-6

retained Segment priority 17-3
pseudo Segment reference 15-4
picture Segment storage 14-2

picture library Segment storage 14-4
primary buffer for Segment storage 14-3

inquire retained Segment storage method 23-5
retained Segment visibility 17-1

pick input and pseudo Segments 20-7
redraw all retained Segments 16-4

retained Segments and device window 21-10

8th Edition Index-13GPGS-F User’s Guide

Keyword Index Last changed: Aug 16, 1995

redraw retained Segments of device window 21-10
copy retained Segments to background device 19-1, 21-13

Select device 1-2
Select device window 21-5
Select picture library 14-5
Select segment buffer 14-3
Set transformation matrix 6-10

character Shearing 7-5
inquire current character Shearing factor 23-4

coordinate Shearing 6-6
buffer / pick Simulation module 14-2, 16-1, 17-1, 20-5, E-4

character Size 7-4
inquire current character Size 23-3

device window Size 21-8
inquire device window Size 21-12

inquire device Size 5-1, 23-4
marker Size 4-12

inquire current marker Size 23-4
polygon pattern Size 12-8

circle Smoothness 4-10
inquire current circle Smoothness 23-3

Software character selection 7-6
Software circle selection 4-10
Software fonts B-2 to B-9
Software pixel array selection 12-12
Software polygon selection 12-6
Space mode transformations 6-16

character Spacing 7-4
proportional Spacing 7-12

device window Stacking order 21-6
picture segment Storage 14-2

inquire retained segment Storage method 23-5
hidden lines and Surfaces, see HLHS module

SURRENDER C-4

T
colour Table 11-1

default colour Table 11-6
define colour Table 11-2 to 11-6

polygon hatch style Table 12-4, 12-7
polygon pattern Table 12-4, 12-7

inquire colour Table length 23-6
inquire colour Table type 23-6

Text, see also Character
draw numbers as Text 7-3

8th Edition Index-14GPGS-F User’s Guide

Keyword Index Last changed: Aug 16, 1995

inquire hardware Text capability 23-5
get Text event report 8-6

inquire Text extent 7-13
echo selection for Text input 8-9

request Text input 8-3
sample Text input 8-4

proportional Text spacing 7-12
3D polygon Texture 12-11

polygon Texture quality 12-5
polygon Texture selection 12-5

input Tool numbers 8-1
combine Transformation matrices 6-10

set Transformation matrix 6-10
system Transformation matrix 6-1
restore Transformation matrix from stack 6-9

save Transformation matrix in user array 6-10
save Transformation matrix on stack 6-9
reset Transformation matrix to identity 6-1

Transformation mode 6-16
inquire current Transformation mode 23-3

image Transformations 18-1
inquire image Transformations capability 23-5

modelling Transformations 6-1 to 6-17
coordinate Translation 6-3

retained segment Translation 18-1
draw in True scale 5-1

U
Update device 16-3

inquire device window Update state 21-10
User coordinates 2-1

convert window to User coordinates 8-14
convert User to window coordinates 8-14

V
get Valuator event report 8-7

echo selection for Valuator input 8-9
request Valuator input 8-3
sample Valuator input 8-4

automatic Value increment 10-2, 10-5, 12-3
Vanishing point 6-7, 6-16

inquire GPGS-F Version number 1-6
eye position for Viewing 6-12

input echo Viewport 8-8

8th Edition Index-15GPGS-F User’s Guide

Keyword Index Last changed: Aug 16, 1995

Viewport definition 2-2
inquire current Viewport limits 23-2

window to Viewport mapping 2-1 to 2-3, 21-2
Viewport of background device 19-2

inquire maximum Viewport size 23-4
default Viewport values 2-3

device window Visibility 21-6
retained segment Visibility 17-1

W
line Width 9-3
line Width scaling factor 13-1

inquire current line Width scaling factor 23-2
device Window 21-1

current device Window 21-5
input from device Window 21-13

redraw retained segments of device Window 21-10
reparent device Window 21-8

device Window and background device 21-13
device Window and retained segments 21-10
device Window and window to viewport mapping 21-2

Window coordinates 2-1
convert NDC to Window coordinates 8-14
convert user to Window coordinates 8-14

device Window identifier 21-9
inquire current Window limits 23-2

device Window management 21-2 to 21-5
device Window options 21-1, 21-3
device Window position 21-7
device Window size 21-8

inquire device Window size 21-12
device Window stacking order 21-6

convert Window to NDC coordinates 8-14
convert Window to user coordinates 8-14

Window to viewport mapping 2-1 to 2-3, 21-2
inquire device Window update state 21-10

default Window values 2-3
device Window visibility 21-6

inquire number of device Windows available 23-6

	Notice
	TOC
	Preface
	Manual
	Dates
	Ch01
	Ch02
	Ch03
	Ch04
	Ch05
	Ch06
	Ch07
	Ch08
	Ch09
	Ch10
	Ch11
	Ch12
	Ch13
	Ch14
	Ch15
	Ch16
	Ch17
	Ch18
	Ch19
	Ch20
	Ch21
	Ch22
	Ch23
	Ch24
	AppA
	AppB
	AppC
	AppD
	AppE0
	AppE1
	AppE2
	AppF
	AppG
	AppH
	AppI
	Index

